首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of decentralised robust stabilisation is considered for a class of uncertain large-scale time-delay interconnected dynamical systems. In the paper, the upper bounds of delayed state perturbations, uncertainties, interconnection terms, and external disturbances are assumed to be completely unknown, and the delays are assumed to be any non-negative constants. For such a class of uncertain large-scale time-delay interconnected systems, a new method is presented whereby a class of adaptation-free decentralised local robust state feedback controllers can be constructed. In addition, it is also shown that the solutions of uncertain large-scale time-delay interconnected systems can be guaranteed to be uniformly ultimately bounded. Finally, as an application to the practical mechanical systems, some simulations of a numerical example are provided to demonstrate the validity of the theoretical results.  相似文献   

2.
The problem of adaptive robust stabilisation is considered for a class of uncertain nonlinear dynamical systems with multiple time-varying delays. It is assumed that the upper bounds of the nonlinear delayed state perturbations are unknown and that the time-varying delays are any non-negative continuous and bounded functions which do not require that their derivatives have to be less than one. In particular, it is only required that the nonlinear uncertainties, which can also include time-varying delays, are bounded in any non-negative nonlinear functions which are not required to be known for the system designer. For such a class of uncertain nonlinear time-delay systems, a new method is presented whereby a class of continuous memoryless adaptive robust state feedback controllers with a rather simpler structure is proposed. It is also shown that the solutions of uncertain nonlinear time-delay systems can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. Finally, as an application, an uncertain nonlinear time-delay ecosystem with two competing species is given to demonstrate the validity of the results.  相似文献   

3.
不确定关联大系统对时变参数的自适应控制   总被引:3,自引:0,他引:3  
考虑具有时滞的不确定非线性关联大系统的鲁棒控制问题.假设不确定时变参数为半线性或非线性系统的有界输出,通过对时变不确定参数设计自适应律,从而对不确定参数进行估计.利用线性矩阵不等式技术和自适应参数估计方法,设计出鲁棒自适应控制器,从而保证闭环系统渐近稳定.建立了可由线性矩阵不等式表示的镇定条件.仿真示例说明该方法是有效的.  相似文献   

4.
The exponential string stability for a class of nonlinear interconnected large-scale systems with time-varying delay is analysed by using the box theory and constructing a vector Lyapunov function. Under the assumption that the time delay is bounded and continuous, a criterion for exponential string stability of the systems is obtained by analysing the stability of differential inequalities with time-varying delay. The large-scale system is exponential string stable when the conditions associating with the coefficient matrices of the system and the solutions of the Lyapunov equations, interconnected with the system, are satisfied. Since it is independent of the delays and simplifies the calculation, the criterion is easy to apply.  相似文献   

5.
In this paper, we propose an LMI-based design method of a decentralised variable gain robust controller for large-scale interconnected systems with mismatched uncertainties. The mismatched uncertainties under consideration are composed of the matched part and the mismatched one, and the proposed decentralised robust controller consists of a state feedback with a fixed gain and one with a variable gain tuned by parameter adjustment laws. Sufficient conditions for the existence of the proposed decentralised variable gain robust controller are given in terms of linear matrix inequalities (LMIs). Finally, a numerical example is illustrated to validate the proposed design procedure.  相似文献   

6.
In this paper, a novel decentralised differential game strategy for large-scale nonlinear systems with matched interconnections is developed by using adaptive dynamic programming technique. First, the Nash-equilibrium solutions of the corresponding isolated differential game subsystems are found by appropriately redefining the associated cost functions accounting for the bounds of interconnections. Then, the decentralised differential game strategy is established by integrating all the modified Nash-equilibrium solutions of the isolated subsystems to stabilise the overall system. Next, the solutions of Hamilton–Jacobi–Isaaci equations are approximated online by constructing a set of critic neural networks with adaptation law of weights. The stability analysis of each subsystem is provided to show that all the signals in the closed-loop system are guaranteed to be bounded by utilising Lyapunov method. Finally, the effectiveness of the proposed decentralised differential game method is illustrated by a simple example.  相似文献   

7.
In this paper, we focus on the problem of adaptive stabilisation for a class of interconnected uncertain switched stochastic nonlinear systems. Classical adaptive and backstepping technique are employed for control synthesis. Instead of estimating the switching parameters directly, we design the adaptive controller based on the estimations of bounds on switching time-varying parameters. A smooth function is introduced to deal with the difficulties caused by unknown interactions and tuning function approach is used to circumvent the overparameter problem. It is shown that under the action of the proposed controller all the signals of the overall closed-loop systems are globally uniformly bounded in probability under arbitrary switching. Simulation results are presented to illustrate the effectiveness of the proposed approach.  相似文献   

8.
针对一类具有动静态关联项和未建模动态的时变关联系统,通过引入输入滤波器及一系列坐标变换,给出了一种分散自适应输出反馈控制器的设计方案.当时变参数的变化率属于L1∩L∞,外界干扰属于L2∩L∞,未建模动态的幅值在某砦范围内变化时,证明了闭环系统的稳定性,且每一个子系统的输出收敛于零.仿真例子验证了这一控制方案的有效性.  相似文献   

9.
The main purpose of this paper is to propose a design approach by which some simple adaptive robust controllers can be synthesised for a class of uncertain nonlinear dynamical systems which can be transformed into uncertain strict-feedback nonlinear systems. In this paper, an improved backstepping design approach is presented to synthesising a class of continuous adaptive robust state-feedback controllers with a rather simple structure. The improved backstepping design approach can avoid the repeated differentiation problem which appears in using the conventional backstepping algorithm. In particular, it is not required to know the nonlinear upper bound functions of uncertainties. In the light of the presented approach, the state-feedback controllers can be constructed to be linear in the state, with the time-varying control gains which can be self-tuned by the adaptive laws. Similar to the conventional backstepping algorithm, the improved backstepping approach can be extended to a rather large class of uncertain nonlinear systems, and by combining the improved backstepping approach with other control methods, it may be expected to obtain a number of interesting results.  相似文献   

10.
The output tracking control problem is considered for a class of uncertain strict-feedback nonlinear systems with time-varying delays. In the paper, the time-varying delays are assumed to be any non-negative continuous and bounded functions, and it is not necessary for their derivatives to be less than one. It is also assumed that the upper bounds of nonlinear delayed state perturbations and external disturbances are unknown. On the basis of backstepping algorithm, a novel design method is proposed by which some simple adaptive robust output tracking control schemes are synthesised. The proposed design method can avoid the repeated differentiation problem which appears in using the conventional backstepping algorithm, and need not know all the nonlinear upper bound functions of uncertainties, which are repeatedly employed at each step of the backstepping algorithm. In particular, it is not necessary to know any information on the time-varying delays to construct our simple output tracking control schemes. It is also shown that the tracking error can converge uniformly exponentially towards a neighbourhood of the origin. Finally, a numerical example and its simulations are provided to demonstrate the design procedure of the simple method proposed in the paper.  相似文献   

11.
数值界不确定性关联大系统分散鲁棒H控制   总被引:8,自引:0,他引:8  
针对一类状态阵,控制输入阵及关联阵中存在数值界不确定性的关联大系统,研究其分散鲁棒H∞状态反馈和输出反馈控制器设计问题.基于有界实引理,推导出了其存在分散鲁棒H∞控制器的充分条件,即一组矩阵不等式有解.利用Schur补引理,通过固定不同变量,提出了一种构建分散控制器的同伦迭代线性矩阵不等式方法.所获得的控制器使闭环大系统鲁棒稳定,并且达到给定的H∞性能指标.最后用数值例子说明了所提的设计方法的有效性.  相似文献   

12.
This paper addresses the stability problem of fuzzy large-scale systems (FLSSs) with uncertainties and arbitrary time-varying delays. The stability conditions, which are less conservative and more applicable than the existing results, are derived by a novel Lyapunov-Krasovskii functional method and expressed in terms of linear matrix inequalities (LMIs). Two examples are given to demonstrate the correctness and advantage of our theoretical results.  相似文献   

13.
In this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.  相似文献   

14.
针对一类带有有界控制系数和有界扰动的时变参数严反馈非线性系统, 将Nussbaum函数增益及光滑投影算法与自适应逆推设计工具相结合, 提出一种自适应鲁棒非线性控制方案. 在此方案中无需知道控制系数的符号, 以及时变参数和扰动的界. 借助Lyapunov函数及相关引理证明了所设计的自适应鲁棒非线性控制器能保证闭环系统中的所有信号全局一致有界. 可以通过恰当地选取设计参数, 保证系统具有任意指定的控制性能. 仿真研究证明了所提出算法的可行性和有效性.  相似文献   

15.
针对一类具有未知时变时滞的非仿射互联大系统基于神经网络的逼近能力, 提出了一种分散自适应神经网络控制方案。该方案利用中值定理对未知非仿射函数进行分离; 利用分离技术和Young's不等式放宽了对未知时滞及时滞互联不确定项的限制, 同时大大减少了在线调节参数的数量。此外, 利用Lyapunov Krasovskii 泛函补偿了未知时滞带来的不确定性。通过理论分析, 证明了闭环系统所有信号是有界的, 输出跟踪误差收敛到原点的一个小邻域内。最后, 仿真结果验证了所提控制方案的有效性。  相似文献   

16.
This paper is concerned with robust stabilization for a class of T-S fuzzy control systems with interval time-varying delays. An approach is proposed to significantly improve the system performance while reducing the number of scalar decision variables in linear matrix inequalities. The main points of the approach are: (i) two coupling integral inequalities are proposed to deal with some integral items in the derivation of the stability criteria; (ii) an appropriate Lyapunov-Krasovskii functional is constructed by including both the lower and upper bounds of the interval time-varying delays; and (iii) neither model transformation nor free weighting matrices are employed in the theoretical result derivation. As a result, some improved sufficient stability criteria are derived, and the maximum allowable delay bound and controller gains can be obtained simultaneously by solving an optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed approach.  相似文献   

17.
In this paper, the output tracking control problem for a class of switched nonlinear systems with multiple time-varying delays is studied based on equivalent-input-disturbance (EID) approach. More precisely, with the use of suitable Lyapunov-Krasovskii functional together with average dwell-time technique, an output feedback tracking controller is designed which makes that the states of resulting system can asymptotically track the desired trajectory. Further, the EID estimator is implemented to reject both matched and unmatched disturbances effectively without requiring any prior knowledge of the disturbances. Simulation results are presented to illustrate the effectiveness and potential of the developed EID-based output tracking control design technique. The results reveal the fact that the tracking controller based on EID provides a better tracking performance than the feedback controller based on sliding mode technique.  相似文献   

18.
In this paper, a new integral inequality is presented. By combining this integral inequality with adaptive approach, new design methods can be developed to synthesize some adaptive robust control schemes for a large class of uncertain nonlinear systems and to deal with well the unknown nonlinearities appearing in uncertain nonlinear control dynamical systems. As an application of the presented integral inequality to control theory, the robust stabilization problem is considered for a class of uncertain strict‐feedback nonlinear systems with both time‐delay and unknown dead‐zone input nonlinearities. It is shown that there are two main merits in the design method based on the integral inequality presented in this paper. The first one is that one need not estimate and know the unknown nonlinearities to synthesize some stabilizing control schemes. The second one is that the resulting feedback control schemes have rather simple structure.  相似文献   

19.
This paper investigates the robust stability problem for a class of uncertain neutral-type delayed systems. The systems under consideration contain parameter uncertainties and time-varying delays. We aim at designing less conservative robust stability criteria for such systems. A new second-order reciprocally convex inequality is first proposed in order to deal with double integral terms. Then, by constructing a new Lyapunov– Krasovskii functional and employing the improved Wirtinger-based integral inequality and the reciprocally convex combination approaches, novel stability criteria are obtained. Moreover, the stability conditions for standard time-delay system are obtained as by-product results. Comparisons in three numerical examples illustrate the effectiveness of our results.  相似文献   

20.
针对单输入单输出不确定非线性系统提出了一种自适应鲁棒模糊控制算法.该算法通过设计观测器来估计系统的状态向量,因此不要求假设系统的状态向量是可测的.在这个算法中,主要的假设为最优逼近参数向量与标称参数向量之差的范数和逼近误差的界限是未知的.通过只对未知界限估计的调节,该算法减轻了在线计算量并且提高了系统的鲁棒性.所设计的自适应鲁棒模糊控制算法保证了闭环系统的所有信号是一致有界的并且跟踪误差估计收敛到一个小的零邻域内.仿真例子证实了所提方法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号