首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 234 毫秒
1.
极限学习机具有学习速度快、精度高的优点。为了进一步提高泛化能力,将差分进化算法的全局寻优和算法简单的特点引入到极限学习机的参数优化中,建立了基于差分进化算法优化极限学习机的模型,使两种算法的优点有机结合,应用于模拟电路故障诊断中。首先利用主元分析对电路采样信号进行处理,提取故障特征;其次利用差分进化算法的全局寻优能力优化极限学习机网络的权值和阈值,具有很好的泛化能力。此方法应用于电路仿真实例中,能在较短的时间内获得满意的结果。  相似文献   

2.
为及时精准地发现模拟电路故障,保障电子仪表的安全稳定运行,提出了基于深度信念网络的模拟电路故障诊断方法。采用自动编码器模拟电路初始故障信号进行降噪处理,将降噪后信号输入到深度信念网络中提取特征,极限学习机根据特征建立故障诊断模型,结果表明,深度信念网络可以有效提取模拟电路各类故障特征,模拟电路各类故障的整体诊断精确率可达到98.47%,可为模拟电路保障诊断提供了一种新的工具。  相似文献   

3.
为了能够更加高效地检测和诊断模拟电路中的故障元件,提出了自适应狼群算法优化极限学习机的方法。该方法采用自适应遗传算法对特征参数进行选择,从而生成最优特征子集,然后利用最优特征子集构造样本输入极限学习机ELM网络对故障进行分类。针对极限学习机的输入层和隐含层之间的连接权值、隐含层的偏差都将会使其学习速度和分类正确率受到影响的问题,采用本文方法对它们进行优化并选择相应的最优值,提高了极限学习机网络训练的稳定性与故障诊断的成功率。通过2个典型模拟电路的诊断实例,给出了这些方法的具体实现过程,故障诊断率均在99%以上。仿真结果表明使用该方法进行模拟电路故障诊断时具有良好的正确率和稳定性。  相似文献   

4.
为进一步提高传统极限学习机的泛化能力,提出了一种基于人工蜂群算法优化的极限学习机模型.该模型将人工蜂群算法的全局寻优能力和极限学习机的快速学习能力相结合,有效克服了传统极限学习机的过拟合现象.在确定水压变化比值作为故障特征参数的基础上,将优化后的极限学习机模型应用于供水管网的泄漏故障诊断实验,实验结果表明,经人工蜂群算法优化的极限学习机模型在故障诊断速度和精度方面均优于其他3种模型.  相似文献   

5.
针对模拟电路故障诊断中故障信息的多特征、高噪声以及故障诊断时间较长的问题,提出了一种基于H-DELM的模拟电路故障诊断模型。该模型的架构单元为双随机隐藏层的深度极限学习机DELM-AE,2个随机隐藏层用于编码特征,1个输出层用于解码特征。将DELM-AE以分层结构堆叠构建H-DELM模型,由于DELM-AE可以进行特征表示,而且输出与原始输入信息相同,因此H-DELM可以尽可能多地复制原始输入数据,进而可以学习到更具表现力和紧凑性的特征。最终通过四运放双二次高通滤波器和更复杂的二级四运放双二阶低通滤波器2个电路进行验证。实验结果表明了该模型在模拟电路故障诊断上的可行性;与其他模型的比较表明该模型的鲁棒性较强,分类速度可以达到1 s左右,故障分类准确率可以达到100%。  相似文献   

6.
针对不平衡数据对变压器故障诊断模型辨识精度的影响,提出一种基于自适应综合过采样(ADAptive SYNthetic, ADASYN)与改进鲸鱼算法优化核极限学习机的变压器故障诊断模型。首先,利用ADASYN算法优化变压器故障数据均衡化处理,解决变压器故障数据集类间不平衡给模型带来的偏倚问题。其次,通过多策略组合改进了鲸鱼优化算法(improved whale optimization algorithm, IWOA)的搜索速度、收敛能力和局部极值的逃逸能力。最后,改进鲸鱼算法对核极限学习机(kernel based extreme learning machine, KELM)正则化系数和核函数参数寻优,构建改进鲸鱼算法优化核极限学习机(IWOA-KELM)故障诊断模型。将模型应用于变压器故障诊断领域,用该模型与粒子群算法核极限学习机模型(PSO-KELM)、灰狼算法优化核极限学习机模型(GWO-KELM)和鲸鱼算法核极限学习机模型(WOA-KELM)的诊断精度对比,分别提升14.17%、 12.5%和8.34%,这证明了所提故障诊断模型具有更高的精度和泛化能力。  相似文献   

7.
针对模拟电路易发生故障且不易诊断的问题,提出了一种基于深度学习的模拟电路故障诊断算法。该算法首先将采样的原始数据制作成语音形式,然后通过时频域变化转化为语谱图,最后再将其送入VGG16模型中进行训练与测试。实验结果表明,该算法用于模拟电路故障诊断时能够识别的故障种类达到9种,同时准确度达到了100%,具有很强的电路故障诊断能力。  相似文献   

8.
针对传统深度核极限学习机网络仅利用端层特征进行分类导致特征不全面,以及故障诊断分类器中核函数选择不恰当等问题,提出基于多层特征表达和多核极限学习机的船舶柴油机故障诊断方法。利用深度极限学习机网络提取故障数据的多层特征;将提取出的各层特征级联为一个具有多属性特征的故障数据特征向量;使用多核极限学习机分类器准确地实现柴油机的故障诊断。在标准分类数据集和船舶柴油机仿真故障数据集上的实验结果表明,与其他极限学习机算法相比,该方法能够有效提高故障诊断的准确率和稳定性,且具有较好的泛化性能,是柴油机故障诊断一个更为优秀实用的工具。  相似文献   

9.
滚动轴承作为旋转机械中的必需元件,其任何故障都可能导致机器乃至整个系统发生故障,从而导致巨大的经济损失和时间的浪费,因此必须要及时准确地诊断滚动轴承故障。针对传统极限学习机中模型参数对滚动轴承故障诊断精度影响较大的问题,提出了一种基于贝叶斯优化的深度核极限学习机的滚动轴承故障诊断方法。首先,将自动编码器与核极限学习机相结合,构建了深度核极限学习机(Deep kernel extreme learning machine, DKELM)模型。其次,利用贝叶斯优化(Bayesian optimization, BO)算法对DKELM中的超参数进行寻优,使得训练数据集和验证数据集在DKELM模型中的分类错误率之和最低。然后,将测试数据集输入到训练好的BO-DKELM中进行故障诊断。最后,采用凯斯西储大学轴承故障数据集对所提方法进行验证,最终故障诊断精度为99.6%,与深度置信网络和卷积神经网络等传统智能算法进行对比,所提方法具有更高的故障诊断精度。  相似文献   

10.
为提升模拟电路故障诊断精度,结合基于故障特征间一维模糊度的特征选择算法,提出一种新的多核超限学习机诊断模型。该模型通过设置虚拟的基核,将正则化参数融入基核权重求解过程中;同时,通过将特征空间类内散度集成到多核优化目标函数中,在最小化训练误差的同时,使得同一模式的故障样本更加集中,有效提升了故障模式间的辨识力。通过两个模拟电路诊断实例表明:相比于单核学习算法,所提方法可以显著提升诊断精度,并且可以将难以辨识的故障样本更加准确地隔离到相应模糊组中;相比于一般的多核学习算法,所提方法在取得相似诊断精度的同时,时间花费更少。  相似文献   

11.
为了提高模拟电路故障的诊断效果,提出基于DCCA-IWO-MKSVM的模拟电路故障诊断方法。采用DCCA算法对模拟电路的故障特征进行提取,构造新的融合特征。对支持向量机的核函数进行线性组合构造新的多核函数,并用IWO算法对其参数进行优化,以构建最优故障诊断模型,用于融合特征的学习分类。故障诊断实验结果表明:对于融合特征的故障诊断效率,该算法要优于单核函数的IWO-SVM算法,且整个故障诊断系统的诊断效果具有较高的准确率。  相似文献   

12.
鉴于在实际的应用中滚动轴承的故障信号所属的类别往往是未知的,而且为了得到一定的测试数据需要花费大量的时间,甚至对机械设备造成了一些损害.利用极限学习机训练速度快且泛化能力强的特点,提出了一种基于半监督极限学习机的滚动轴承故障诊断方法,该方法允许在有少量带标签的轴承故障数据的情况下,将带标签的历史数据与新采集到的部分未带标签的数据一起用来训练得到一个最优的诊断模型.首先通过相空间重构将原始一维信号映射到一个高维的相空间,在相空间中提取初始的轴承特征集,然后将特征集输入半监督的极限学习机中进行训练和测试.实验结果表明,这种基于半监督算法的诊断模型简单,在神经元个数较少的情况下仍然具有很好的泛化能力,具有一定的应用价值.  相似文献   

13.
针对模拟电路故障诊断复杂多样难于辨识的问题,提出了基于融合特权信息支持向量机的模拟电路故障诊断新方法。首先对采集的信号进行主成分分析(PCA)——特征提取;然后将训练集输入融合特权信息支持向量机进行训练获得故障诊断模型;最后将测试集输入训练好的支持向量机分类模型,实现对不同故障类型的识别。Sallen-Key滤波电路故障诊断仿真实验结果表明,该方法有效提高了分类的性能,不仅能够正确分类单故障而且能够有效分类多故障,其中单硬故障情况下平均故障诊断率达到了99%以上,为模拟电路故障诊断提供了新的途径。  相似文献   

14.
为解决故障特征样本分批加入时分类模型的在线更新问题,提出一种限定样本序贯极端学习机(LSSELM)。 LSSELM通过逐步添加新样本,同时剔除与其相似度最高的同类别旧样本来提高模型的动态适应能力,并通过Sherman-Morrison矩阵求逆引理来降低计算复杂度,实现输出权值的递推求解,完成模型的在线训练。将LSSELM用于模拟电路在线故障诊断,结果表明相比在线序贯极端学习机(OS-ELM)和LSSELM的诊断准确率更高,具有更好的泛化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号