首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
具时滞脉冲细胞神经网络的全局指数稳定性   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了一类新的具有脉冲的时滞细胞神经网络系统模型,引入了一类新的脉冲条件,在不假设激励函数的有界性、单调性和光滑性的条件下,得到了系统平衡点的存在性、唯一性及全局指数稳定性的一些新的充分条件,并得到了指数收敛速率.  相似文献   

2.
在不要求激活函数有界的前提下,利用Lyapunov泛函方法和线性矩阵不等式(LMI)分析技巧,研究了一类变时滞神经网络平衡点的存在性和全局指数稳定性.给出判别网络全局指数稳定性的判据,推广了现有文献中的一些结果.这些判据具有LMI的形式,进而易于验证.仿真例子表明了所得结果的有效性.  相似文献   

3.
Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.  相似文献   

4.
利用M矩阵理论,同构理论以及不等式技巧,研究了一类变时滞神经网络平衡点的存在性和惟一性问题。同时利用M矩阵理论,反证法以及不等式技巧,得到了变时滞神经网络系统惟一的平衡点的全局指数稳定性的充分条件。通过判断由神经网络的权系数、自反馈函数以及激励函数构造的矩阵是否为M矩阵,即可以检验该变时滞神经网络系统的全局指数稳定性。该判据易于用Matlab进行检验,最后给出一个仿真示例进一步证明了判据的有效性。  相似文献   

5.
在近十几年里,已提出了一类与双向联想记忆相联系的神经网络模型,这些模型推广了单层自联想Hebbian相关器为两层异联想模式匹配器,因而,这类网络在模式识别、信号与图像处理等领域中有广阔的应用前景.研究了带离散时滞杂交双向联想记忆神经网络的收敛特性,利用Halanay型不等式获得了网络全局指数稳定性的充分条件,所得结果是与时滞无关的;已证明利用Halanay型不等式获得的结果改进了由Lyapunov方法获得的结果,而且获得的结果容易判定,并且给出了一个数值例子以说明所得结论的正确性.  相似文献   

6.
通过构造适当的Lyapunov函数,利用Halanay不等式和Young不等式,讨论一类具有变时滞的Hopfield型神经网络的全局指数稳定性.在对网络施加两个不同的神经元激励函数的条件下,导出网络全局指数稳定的一个充分条件,得到的充分条件在实际应用中易于验证,且有较小的保守性,因而对网络的应用和设计具有重要意义.最后,一个数值实例进一步验证结果的正确性.  相似文献   

7.
陈松灿  蔡骏 《计算机学报》2000,23(11):1184-1188
提出了多证据推理中采用神经网络来模拟信念组合学习方法。网络由多个改进型指数双向联想记忆模型(IeBAM)构成,并且共享一个输出来同时进行多证据不确定性的管理。文中证明了多重IeBAM(Multi-IeBAM)的稳定性,讨论了在多条证据同时提交网络后的多数规则。理论和实验都证明了多数因子比Wang所提模型更紧凑、更严格,从而可保证在受一定程度的干扰下,专家们仍能做出正确决策。最后所给出的模拟例子的结果与直觉推理相吻合。  相似文献   

8.
基于众多领域及生物神经网络本身所存在的脉冲瞬动现象,本文首次提出并研究了带时滞的脉冲型Hopfield神经网络的全局指定稳定性问题,并讨论了其平衡态的存在唯一性。  相似文献   

9.
本文对双向联想记忆(BAM)的学习与回忆过程进行了详细的分析。在学习过程中,先是运用自适应非对称BAM算法进行学习,进而采用设置印象门限的反复记忆算法进行学习,本文从理论上证明了印象门限与样本吸引域之间的关系,指出反复记忆方法的理论依据。回忆过程中,采用非零阈值函数的运行方程,提出了阈值学习方法,并且从理论上证明了非零阈值函数的运行方程的采用,可进一步扩大吸引域。为了进一步扩大网络的信息存储量,本文引入了并联的BAM结构。本文方法的采纳,使得BAM网络的信息存储量、误差校正能力等得到很大程度的提高。  相似文献   

10.
    
This article investigates the exponential H∞$$ {H}_{infty } $$ control issue of bidirectional associative memory neural network (BAMNN) with unbounded time-varying delays. A bounded real lemma (BRL) is first established via a direct method, which is on the basis of the solutions of BAMNN. Second, based on the obtained BRL, the state feedback controller is designed to guarantee the global exponential stability of the resulting closed-loop BAMNN with an H∞$$ {H}_{infty } $$ performance index. Since no Lyapunov–Krasovskii functionals is constructed in the proposed method, the computation burden and complexity are reduced. Lastly, the effectiveness of the theoretical results is illustrated through two numerical examples.  相似文献   

11.
讨论了一类广义时变时滞递归神经网络的平衡点的存在性、唯一性和全局指数稳定性。这个神经网络模型包括时滞Hopfield神经网络,时滞Cellular神经网络,时滞Cohen-Grossberg神经网络作为特例。基于微分不等式技术,利用Brouwer不动点定理并构造合适的Lyapunov函数,得到了保证递归神经网络的平衡点存在、唯一、全局指数稳定的新的充分条件。新的充分条件不要求激励函数的可微性、有界性和单调性,同时减少了对限制条件的要求。两个仿真例子表明了所得结果的有效性。  相似文献   

12.
    
This article mainly studies delayed fuzzy cellular neural networks. A sufficient criterion to guarantee the existence and exponential stability of anti-periodic solutions for this system is given. An example is given to support the obtained theoretical analysis. The obtained results play an important role in designing the neural networks and complement the earlier publications.  相似文献   

13.
具有内连接的指数多值双向联想记忆模型   总被引:3,自引:0,他引:3       下载免费PDF全文
C_C Wang的多值指数双向联想记忆模型(MVeBAM)是一种高存储容量的联想神经网络.本文在MVeBAM的基础上通过引入自相关项(或内连接)提出了一个新的具有内连接的多值指数双向联想记忆模型,推广了MVeBAM.通过定义简单的能量函数证明了其在同、异步方式下的稳定性,从而保证了所学模式对成为被推广的MVeBAM(EMVeBAM)的稳定点.最后,计算机模拟证实了EMVeBAM比MVeBAM具有更高的存储容量和更好的纠错性能.  相似文献   

14.
C_CWang的多值指数双向联想记忆模型 (MVeBAM)是一种高存储容量的联想神经网络. 本文在MVe BAM的基础上通过引入自相关项 (或内连接 )提出了一个新的具有内连接的多值指数双向联想记忆模型, 推广了MVeBAM. 通过定义简单的能量函数证明了其在同、异步方式下的稳定性, 从而保证了所学模式对成为被推广的MVeBAM(EMVeBAM)的稳定点. 最后, 计算机模拟证实了EMVeBAM比MVeBAM具有更高的存储容量和更好的纠错性能.  相似文献   

15.
文章基于模糊神经网络结构,即通过模糊化,推理,去模糊三个过程,把Kosko提出的模糊联想记忆(FAM)网络模型应用到容错性需要较强的多值联想记忆中,解决了这种网络模型不能对随机噪声模式正确联想的问题,新的网络模型设计简单,大量实验表明文中的联想记忆网络大大提高了FAM网络的容错性能。  相似文献   

16.
研究了一类区间时变扰动、变时滞细胞神经网络的全局鲁棒指数稳定性问题.利用Leibniz-Newton公式对原系统进行模型变换,并分析了变换模型和原始模型的等价性.基于变换模型,运用线性矩阵不等式的方法,通过选择适当的Lyapunov-Krasovskii泛函,推导了该系统全局鲁棒指数稳定的时滞相关的充分条件.通过数值实例将所得结果与前人的结果相比较,表明了本文所提出的稳定判据具有更低的保守性.  相似文献   

17.
    
In this paper, we are concerned with a class of competitive neural networks with multi‐proportional delays. By applying the Banach fixed point theorem and constructing suitable Lyapunov functions, we obtain new sufficient conditions for the global exponential stability to this class of neural networks, which are easily verifiable. Finally, two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

18.
时滞细胞神经网络的稳定性分析   总被引:14,自引:0,他引:14  
周冬明  曹进德 《信息与控制》1998,27(1):32-36,45
研究具有时滞的细胞神经网络(DCNN)的稳定性问题,利用构造Lyapunov泛函,常数变易法及不等式分析技巧,给出了时滞细胞神经网络全局指数稳定性和全局渐近性稳定性的充分判据,这些条件可用于设计出全局稳定的网络,因而具有重要的理论意义和应用价值。  相似文献   

19.
In this paper, a class of interval general bidirectional associative memory (BAM) neural networks with delays are introduced and studied, which include many well-known neural networks as special cases. By using fixed point technic, we prove an existence and uniqueness of the equilibrium point for the interval general BAM neural networks with delays. By using a proper Lyapunov functions, we get a sufficient condition to ensure the global robust exponential stability for the interval general BAM neural networks with delays, and we just require that activation function is globally Lipschitz continuous, which is less conservative and less restrictive than the monotonic assumption in previous results. In the last section, we also give an example to demonstrate the validity of our stability result for interval neural networks with delays.  相似文献   

20.
This paper focuses on the problem of exponential stability in the sense of Lagrange for impulses in discrete-time delayed recurrent neural networks. By establishing a delayed impulsive discrete inequality and a novel difference inequality, combining with inequality techniques, some novel sufficient conditions are obtained to ensure exponential Lagrange stability for impulses in discrete-time delayed recurrent neural networks. Meanwhile, exponentially convergent scope of neural network is given. Finally, several numerical simulations are given to demonstrate the effectiveness of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号