首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the design of low-order unknown input functional observers for robust fault detection and isolation of a class of nonlinear Lipschitz systems subject to unknown inputs. The proposed functional observers can be used to generate residual signals to detect and isolate actuator faults. By using the generalized inverse approach, the effect of the unknown inputs can be decoupled completely from the residual signals. Conditions for the existence and stability of reduced-order unknown input functional observer are derived. A design procedure for the generation of residual signals to detect and isolate actuator faults is presented using the proposed unknown-input observer-based approach. A numerical example is given to illustrate the proposed fault diagnosis scheme in nonlinear systems subject to unknown inputs.  相似文献   

2.
3.
In this paper, the fault-tolerant control (FTC) problem is investigated for a class of multi-input multiple output nonlinear systems with time-varying delays, and an active FTC method is proposed. The controlled system contains unknown nonlinear functions, unknown control gain functions and actuator faults, which integrates time-varying bias and gain faults. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions and unknown control gain functions, fuzzy adaptive observers are used for fault detection and isolation. Further, based on the obtained information, an accommodation method is proposed for compensating the actuator faults. It is shown that all the variables of the closed-loop system are semi-globally uniformly bounded, the tracking error converges to an arbitrary small neighbourhood of the origin. A simulation is given to demonstrate the effectiveness of the proposed approach.  相似文献   

4.
A robust fault detection and isolation scheme is proposed for uncertain continuous linear systems with discrete state delays for both additive and multiplicative faults. Model uncertainties, disturbances and noises are represented as unstructured unknown inputs. The proposed scheme consists of a Luenberger observer for fault detection and a group of adaptive observers, one for each class of faults, for fault isolation. The threshold determination and fault isolation are based on a multi‐observer strategy. Robustness to model uncertainties and disturbances can be guaranteed for the scheme by selecting proper thresholds. All the signals, i.e., the fault estimate and the state and output estimation errors of each isolation observer can be shown to be uniformly bounded, and the estimate of the fault by the matched observer is shown to be satisfactory in the sense of extended H2 norm. Furthermore, the sensitivity to fault and the fault isolability condition are analyzed also in the paper. Simulations of a heating process for detecting and isolating an actuator gain fault and an additive fault show the proposed scheme is effective.  相似文献   

5.
This paper considers the observer-based fault detection and isolation design problems when the observer matching condition is not satisfied. Based on the relative degree concept, an auxiliary output vector that may satisfy the observer matching condition is constructed. Since the auxiliary output vector contains unknown information, we use a high-order high-gain sliding-mode observer to exactly estimate not only the auxiliary outputs, but also their derivatives in a finite time. Then, an adaptive robust full-order observer is developed to serve as an actuator fault detection observer. For the actuator fault reconstruction purpose, a reduced-order observer is proposed to estimate the system states even if there are some actuator faults and an actuator fault reconstruction method is provided to reach the fault isolation purpose. A numerical simulation example is used to illustrate the effectiveness of the proposed methods.  相似文献   

6.
This paper deals with actuator fault diagnosis of neutral delayed systems with multiple time delays using an unknown input observer. The main purpose is to design an observer that guarantees the asymptotic stability of the estimate error dynamics and the actuator fault detection. The existence conditions for such an observer are established. The main problem studied in this paper aims at designing observer‐based fault detection and isolation. The designed observer enhances the robust diagnosis performance, including rapidity and accuracy, and generates residuals that enjoy perfect decoupling properties among faults. Based on Lyapunov stability theory, the design of the observer is formulated in terms of linear matrix inequalities, and the diagnosis scheme is based on a bank of unknown input observers for residual generation that guarantees fault detection and isolation in the presence of external disturbances. A numerical example is presented to illustrate the efficiency of the proposed approach.  相似文献   

7.
针对非线性系统的执行器故障及传感器故障,提出一种鲁棒多故障检测方法.首先,对可能发生的每种执行器故障分别构造模型,并设计相应的滑模观测器用于残差生成,从而实现执行器故障检测.然后,设计一种算法,利用简单滤波器将传感器故障转换为执行器故障,从而直接利用执行器故障检测的方法实现传感器故障的检测,将执行器故障的检测方法推广到执行器、传感器故障同时存在的情况.最后,通过在单关节机械手中的仿真应用验证了所提方法的有效性.  相似文献   

8.
In this paper, an actuator fault diagnosis scheme is proposed for a class of affine nonlinear systems with both known and unknown inputs. The scheme is based on a novel input/output relation derived from the considered nonlinear systems and the use of the recently developed high-order sliding-mode robust differentiators. The main advantages of the proposed approach are that it does not require a design of nonlinear observer and applies to systems not necessarily detectable. Conditions are provided to characterize the feasibility of fault detection and isolation using the proposed scheme and the maximum number of isolatable actuator faults. The efficacy of the proposed actuator fault diagnosis approach is tested through experiments on a laboratory 3D Crane, and the experimental results show that the proposed actuator fault diagnosis approach is promising and can achieve fault detection and isolation satisfactorily.  相似文献   

9.
This article investigates the design and application of a sliding mode observer (SMO) strategy for actuator as well as sensor fault detection, isolation, and estimation (FDIE) problem for a class of uncertain Lipschitz nonlinear systems. Actuator FDIE is addressed by regrouping the system's inputs into a structure suitable for SMO design. Similarly, by filtering the regrouped outputs, a similar system structure can be developed for sensor FDIE problem. Once in the suitable form and under certain assumptions, nonlinear SMOs are proposed for actuator and sensor FDIE. A systematic LMI-based design approach for the proposed SMO is presented. Additionally, the article addresses four problems, namely: (P1) What are the conditions for isolating single and/or multiple faults? (P2) What is the maximum number of faults that can be isolated simultaneously? (P3) How should one design SMO-based FDI approach in order to achieve multiple fault isolation using as few observers as possible? (P4) How can one estimate the shape of the faults? To solve the above problems, a new concept called fault isolation index (FIX) is proposed for actuator and sensor FDIE. It is proved that fault isolation can only be achieved if FIX?≠?0, and also that the maximum number of faults that can be isolated is equal to FIX. Using the proposed fault isolation strategy and by treating some healthy inputs or outputs as unknown inputs, a systematic FDIE design scheme using a bank of nonlinear SMOs, which provides a solution for the four problems is provided. An example is used to illustrate the proposed ideas. The simulation results show that the proposed FDIE scheme can successfully detect and isolate both slowly and fast-changing actuator faults. It is also shown that accurate estimation of actuator faults can be achieved.  相似文献   

10.
基于未知输入集员滤波器的不确定系统故障诊断   总被引:4,自引:0,他引:4  
汤文涛  王振华  王烨  沈毅 《自动化学报》2018,44(9):1717-1724
针对一类具有参数不确定性和未知扰动的线性系统,提出了一种新的执行器故障诊断方法.将指定执行器故障视为未知输入,利用全对称多胞形近似状态边界,本文设计了一种未知输入全对称多胞形集员滤波器,以估计测量输出的上下边界.在此基础上,提出了一种利用一组未知输入滤波器的故障检测与分离策略.通过一个飞行控制系统的数值仿真验证了所提出方法的有效性.  相似文献   

11.
基于高增益鲁棒滑模观测器的故障检测和隔离   总被引:1,自引:0,他引:1  
杨俊起  朱芳来 《自动化学报》2012,38(12):2005-2013
针对一类同时具有执行器和传感器故障的不确定线性系统,讨论了基于观测器的故障检测和隔离方法.首先,通过引入增维向量,使得在构造的增维系统中,故障向量包含了原系统的执行器故障和传感器故障.通过构造辅助输出使增维系统的观测器匹配条件得以满足,同时设计高增益滑模观测器对辅助输出进行估计.然后,对增维系统构造鲁棒滑模观测器并用作故障检测观测器,通过滑模控制项来抑制干扰,使观测器具有鲁棒性.在此基础上,结合多观测器故障隔离思想,提出了可以同时对执行器故障和传感器故障进行检测和隔离的方法. 最后,通过对一个五阶飞行器模型进行仿真,证明了所提方法的有效性.  相似文献   

12.
In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers’ schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.  相似文献   

13.
王恒  居鹤华  王玉龙 《控制与决策》2013,28(8):1207-1213
研究不确定飞行控制系统执行器中断故障检测与分离问题,同时设计了状态反馈控制器和检测器,在保证闭环控制系统稳定的前提下,通过设计的检测器对系统状态进行重组以产生残差进而检测执行器的中断故障。此外,通过设计一组分离器,可以确定出执行器发生故障的位置。最后,通过研究一个飞行控制系统模型验证了所提出方法的有效性。  相似文献   

14.
This paper presents a new scheme for fault detection and isolation in a satellite system. The purpose of this paper is to develop detection, isolation and identification algorithms based on a cascade filter for both total and partial faults in a satellite attitude control system (ACS). The cascade filter consists of a decentralized Kalman filter (DKF) and a bank of interacting multiple model (IMM) filters. The cascade filter is utilized for detection and diagnosis of anticipated sensor and actuator faults in a satellite ACS. Other fault detection and isolation (FDI) schemes are compared with the proposed FDI scheme. The FDI procedure using a cascade filter was developed in three stages. In the first stage, two local filters and a master filter detect sensor faults. In the second stage, the FDI scheme checks sensor residuals to isolate sensor faults, and 11 Extended Kalman filters with actuator fault models detect wherever actuator faults occur. In the third stage of the FDI scheme, four filters identify the fault type, which is either a total or partial fault. An important feature of the proposed FDI scheme is that it can decrease fault isolation time and accomplish not only fault detection and isolation but also fault type identification using a scalar penalty in the conditional density function.  相似文献   

15.
This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.  相似文献   

16.
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach.  相似文献   

17.
In this paper, we present a robust actuator fault‐tolerant control strategy for constrained linear systems in the presence of bounded state and input disturbances. The scheme is based on a bank of state estimators that match different fault situations that can occur in the system. A fault detection and isolation unit verifies that suitable residual variables lie inside pre‐computed sets and selects the estimate that matches the current plant behaviour. A bank of robustly stabilizing tube‐based model predictive control laws is designed, each associated to a fault scenario, and the appropriate controller is selected among them by using the information provided by the fault detection and isolation module. By means of ‘tubes’ of trajectories, we ensure robust closed‐loop exponential stability of the constrained system and good performance in the fault‐free case and under the occurrence of abrupt actuator faults, including actuator outage and loss of effectiveness by an unknown amount. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The use of an optimised parity space approach for actuator fault detection and isolation (FDI) is explored. The parity space spans all the parity relations that quantify the analytical redundancies available between the sensor outputs and the actuator inputs of a system. A transformation matrix is then optimised to transform these parity relations into residuals that are especially sensitive to specific actuator faults. Actuator faults cause the variance of parity space residuals to increase. A cumulative summation procedure is used to determine when residual variance has changed sufficiently to indicate a locked-in-place actuator fault. A pseudoinverse actuator estimation scheme is used to extract the actuator deflections from the parity relations. It is found that the optimisation of the parity space approach introduces the advantage of added design freedom to the fault detection algorithm. The approach is applied to the identification of faulty aircraft control surface actuators that remain locked-in-place during flight and is successfully tested both in simulation and practical flight.  相似文献   

19.
This paper focuses on the use of unknown input observers for detection and isolation of actuator and effector faults with control reconfiguration in overactuated systems. The proposed approach consists in tuning the observer parameters in order to make the filters decoupled from faults affecting selected groups of actuators or effectors. The control allocation actively uses input redundancy in order to make relevant faults observable. The case study of an overactuated marine vessel supports theoretical developments.  相似文献   

20.
This paper deals with subspace method aided data-driven design of robust fault detection and isolation systems. The basic idea is to identify a primary form of residual generators directly from test data and then make use of performance indices to make uniform the design of different type robust residuals. Four algorithms are proposed to design fault detection, isolation and identification residual generators. Each of them can achieve robustness to unknown inputs and sensitivity to sensor or actuator faults. Their existence conditions and multi-fault identification problem are briefly analyzed as well and the application of the method proposed is illustrated by a simulation study on the vehicle lateral dynamic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号