首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the problem of robust reliable control for a class of uncertain neutral delay systems. The aim was to design a state feedback controller such that the plant remained stable for all admissible uncertainties as well as actuator faults among a prespecified subset of actuators or sector-type actuator non-linearity, independently of the delay time. A linear matrix inequality approach was developed to solve the problem addressed with an H X norm bound constraint on disturbance attenuation.  相似文献   

2.
A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.  相似文献   

3.
In this article, the problem of H control is investigated for a class of mechanical systems with input delay and parameter uncertainties which appear in all the mass, damping and stiffness matrices. Two approaches, norm-bounded and linear fractional transformation (LFT) uncertainty formulations, are considered. By using a new Lyapunov–Krasovskii functional approach, combined with the advanced techniques for achieving delay dependence, improved robust H state-feedback controller design methods are developed. The existence condition for admissible controllers is formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex optimisation problem subject to LMI constraints. If the optimisation problem is solvable, a desired controller can be readily constructed. The result for the norm-bounded uncertainty case improves the existing ones in terms of design conservatism, and that for the LFT uncertainty case represents the first attempt in this direction. An illustrative example is provided to show the effectiveness and advantage of the proposed controller design methodologies.  相似文献   

4.
This paper focuses on the problem of robust H ?? control of nonlinear switched systems with parameter uncertainty via the multiple Lyapunov functions (MLFs) approach. The uncertain parameters are assumed to be in a known compact set and are allowed to enter the system nonlinearly. Based on the explicit construction of Lyapunov functions, which avoids solving the Hamilton-Jacobi-Isaacs (HJI) inequalities, sufficient conditions for the solvability of the robust H ?? control problem of cascade nonlinear switched systems are derived under some switching signal. Then, the result is extended to solve the robust H ?? control problem of nonlinear switched systems in strict feedback form. Finally, the effectiveness of the proposed results is illustrated through a simulation example.  相似文献   

5.
In this work two main robust control strategies, the sliding mode control (SMC) and nonlinear H control, are integrated to function in a complementary manner for tracking control tasks. The SMC handles matched L [0,∞) type system uncertainties with known bounding functions. H control deals with unmatched disturbances of L 2[0,∞) type where the upper-bound knowledge is not available. The new control method is designed for a class of nonlinear uncertain systems with two cascade subsystems. Nonlinear H control is applied to the first subsystem in the presence of unmatched disturbances. Through solving a Hamilton-Jacoby inequality, the nonlinear H control law for the first subsystem well defines a nonlinear switching surface. By virtue of nonlinear H control, the resulting sliding manifold in the sliding phase possesses the desired L 2 gain property and to a certain extend the optimality. Associated with the new switching surface, the SMC is applied to the second subsystem to accomplish the tracking task, and ensure the L 2 gain robustness in the reaching phase. Two illustrative examples are given to show the effectiveness of the proposed robust control scheme.  相似文献   

6.
This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI) such that the plant satisfies robust H-infinity performance for all adnfissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.  相似文献   

7.
In this paper, an event-triggering scheme is implemented in uncertain switched linear systems with time-varying delays and exogenous disturbance. Instead of standard periodically time-triggered, sampled-data control systems, the event-triggered control systems sample data only when an event, typically defined as some performance error exceeding a tolerant bound, occurs. Specifically, considering the disturbance existing in the system, the event-triggered robust H control problem is studied. In order to guarantee the robust H performance, the event-triggered full state feedback control, multiple Lyapunov functions method and state-dependent switching law are utilised to construct sufficient conditions in terms of linear matrix inequalities. In particular, since the event-triggered signals and switching signals may interlace with each other, the influence from them on the analysis of robust H performance is clarified. Subsequently, sufficient design conditions of the sub-controllers’ gains are further presented. Moreover, the Zeno problem is discussed to exclude continuously triggering and sampling. Finally, numerical simulations are provided to verify the feasibility of the proposed approach.  相似文献   

8.
This paper presents a new approach for the design of robust H sliding mode observer (SMO) for a class of Lipschitz nonlinear systems where both faults and uncertainties are considered. A sufficient condition using linear matrix inequality (LMI) optimization is derived to guarantee the asymptotically stability of the estimation error dynamics and compute the observer gains. A fault estimation scheme is presented where the estimation signal can approximate the fault to some degree of accuracy. Our design approach has some advantages. The Lipschitz constant of the nonlinear term in the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. For this reason, the Lipschitz constant is suitable to a large class of uncertain nonlinear systems. Moreover, the fault estimation is much more robust against disturbances and nonlinear uncertainty and can preserve the fault signal shape effectively. Finally, a simulation study on a robotic arm system is presented to show the effectiveness of this approach.  相似文献   

9.
《Systems & Control Letters》2004,51(3-4):203-215
This paper deals with the problems of robust stabilization and robust H control for discrete stochastic systems with time-varying delays and time-varying norm-bounded parameter uncertainties. For the robust stabilization problem, attention is focused on the design of a state feedback controller which ensures robust stochastic stability of the closed-loop system for all admissible uncertainties, while for the robust H control problem, a state feedback controller is designed such that, in addition to the requirement of the robust stochastic stability, a prescribed H performance level is also required to be satisfied. A linear matrix inequality (LMI) approach is developed to solve these problems, and delay-dependent conditions for the solvability are obtained. It is shown that the desired state feedback controller can be constructed by solving certain LMIs. An example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

10.
Based on a kind of regular form,a Lyapunov matrix with special structure is presented to design the sliding surface matrix conveniently and then an effective algorithm is developed on it. A simple static output feedback sliding mode control law without extra dynamic equation is given, such that the predefined shding surface is reached in finite time for the general matching uncertainties. In the reported result, this extra dynamic equation is used for evaluating the norm bound of the unmeasured state vector. Finally, some examples are studied to illustrate the proposed approach.  相似文献   

11.
This article proposes a methodology for designing a partially mode delay dependent ? controller design for discrete-time systems with random communication delays. Communication delays between sensors and controller are modelled by a finite state Markov chain where the transition probability matrix is partially known. Stability criteria are obtained based on Lyapunov–Krasovskii functional and a novel methodology for designing a partially mode delay dependent state feedback controller has been proposed. The controller is obtained by solving linear matrix inequality optimisation problems using cone complimentarity linearisation algorithm. A numerical example is provided to illustrate the effectiveness of the proposed controller.  相似文献   

12.
13.
Robust adaptive control of a class of nonlinear uncertain systems   总被引:1,自引:0,他引:1  
A smooth robust dynamic feedback controller is constructed, and the problem of robust H∞ almost disturbance attenuation with internal stability is solved for high-order nonlinear systems with parameter uncertainties. Finally, illustrative example and simulation results demonstrate the effectiveness of the proposed method.  相似文献   

14.
This paper describes the mixed H 2 /H X controller design method of linear systems with time-varying delays in both state and control input. More specifically, the proposed mixed H 2 /H X controller minimizes the H 2 performance measure when satisfying a prescribed H X norm bound on the closed loop system. The sufficient conditions for the existence of controller, the mixed H 2 /H X controller design method and the upper bound of performance measure are presented using the linear matrix inequality (LMI) technique. Also, all solutions including controller gain and the upper bound of performance measure are obtained simultaneously. Furthermore, the proposed controller design method can be easily extended into the problem of robust mixed H 2 /H X controller design method for parameter uncertain systems with time-varying delays in both state and control input.  相似文献   

15.
This paper addresses the problem of designing mixed H2/H tracking control for a large class of uncertain robotic systems. Nonlinear H control theory, H2 control theory and intelligent adaptive control algorithm are combined to construct a hybrid adaptive/robust H2/H tracking control scheme. One adaptive neural network system is constructed to approximate the behaviour of uncertain robot dynamics, and the other adaptive control algorithm is designed to estimate the behaviour of the modelled disturbance. Moreover, a robust H control algorithm is designed to attenuate the effects of the unmodelled disturbance. Only a set of algebraic matrix Riccati-like equations is required to implement the proposed mixed H2/H tracking controller, and so an explicit and closed-form solution is obtained. Consequently, the mixed H2/H adaptive/robust tracking controller developed here can be analytically computed and easily implemented. Finally, simulations are presented to illustrate the effectiveness of the proposed control algorithm.  相似文献   

16.
1 Introduction In recent years, the switched control systems have been attracting considerable attention in the control commu- nity [1~7]. Basically, a switched system belongs to a spe- cial class of hybrid systems, which consist of a family of continuous-time or discrete-time subsystems and a switch- ing law that specifies the switching between them. Such control systems appear in many applications, such as com- municatin networks, switching power converters and many other fields. On the oth…  相似文献   

17.
In this paper, a robust H model predictive control (MPC) technique is proposed for time-varying uncertain discrete-time systems in the presence of input constraints and disturbances. We formulate a minimization problem of the upper bound of finite horizon cost function subject to the terminal inequality for an induced l 2-norm bound. In order to improve system performance, we propose an LMI condition for the terminal inequality by using relaxation matrices. The LMI condition guarantees induced l 2-norm bounds of the system despite system uncertainty and disturbance. A numerical example shows the effectiveness of the proposed method.  相似文献   

18.
An H , control problem with measurement feedback.for infinite-dimensional discrete-time (IDDT) systems whose homogeneous parts are described by Riesz-spectra operators is considered. The aim is to construct a finite-dimensional stabilizing controller for the IDDT system that makes the H norm of the closed-loop transfer function less than a given positive number δ. For that purpose, we first formulate the IDDT system as an IDDT system in l2 and derive a finite-dimensional reduced-order system for the IDDT system in l2. A stabilizing controller that makes the H norm of the closed-loop transfer function less than another positive number is then constructed for the reduced-order model. The finite-dimensional controller together with a residual mode Jilter plays a role of a finite-dimensional stabilizing controller that makes the H norm of the closed-loop transfer function less than δ for the original IDDT system, if the order of the residual mode filter is chosen suficiently large.  相似文献   

19.
This paper deals with the issue of observer-based H resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.  相似文献   

20.
A new dynamic terminal sliding mode control (DTSMC) technique is proposed for a class of single-input and single-output (SISO) uncertain nonlinear systems. The dynamic terminal sliding mode controller is formulated based on Lyapunov theory such that the existence of the sliding phase of the closed-loop control system can be guaranteed, chattering phenomenon caused by the switching control action can be eliminated, and high precision performance is realized. Moreover, by designing terminal equation, the output tracking error converges to zero in finite time, the reaching phase of DSMC is eliminated and global robustness is obtained. The simulation results for an inverted pendulum are given to demonstrate the properties of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号