首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于带未知常的输入和带未知噪声统计的离散时间定常系统,本文用现代时间序列分析方法,基于ARMAX新息模型,提出了一种新的带输入估计的自校正Kalman滤波器。作为一个应用例子,提出了带输入估计的自校正α-β-γ跟踪滤波器,仿真结果说明了其有效性。  相似文献   

2.
An algorithm is proposed for self-tuning optimal fixed-lag smoothing or filtering for linear discrete-time multivariable processes. Az-transfer function solution to the discrete multivariable estimation problem is first presented. This solution involves spectral factorization of polynomial matrices and assumes knowledge of the process parameters and the noise statistics. The assumption is then made that the signal-generating process and noise statistics are unknown. The problem is reformulated so that the model is in an innovations signal form, and implicit self-tuning estimation algorithms are proposed. The parameters of the innovation model of the process can be estimated using an extended Kalman filter or, alternatively, extended recursive least squares. These estimated parameters are used directly in the calculation of the predicted, smoothed, or filtered estimates. The approach is an attempt to generalize the work of Hagander and Wittenmark.  相似文献   

3.
Discrete-time delayed standard neural network model and its application   总被引:4,自引:2,他引:4  
The research on the theory and application of artificial neural networks has achieved a great success over the past two decades. Recently, increasing attention has been paid to recurrent neural networks, which are rich in dynamics, highly parallelizable, and easily implementable with VLSI. Due to these attractive features, RNNs have widely been applied to system identification, control, optimization and associative memories[1]. Stability analysis, which is critical to any applications of R…  相似文献   

4.
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.  相似文献   

5.
An internal model-based neural network control is proposed for unknown non-affine discrete-time multi-input multi-output (MIMO) processes in nonlinear state space form under model mismatch and disturbances. Based on the neural state-space model built for an unknown nonlinear MIMO state space process, an approximate internal model and approximate decoupling controllers are derived simultaneously. Thus, the learning of the inverse process dynamics is not required. A neural network model-based extended Kalman observer is used to estimate the states of a nonlinear process as not all states are accessible. The proposed neural internal model control can work for open-loop unstable processes with its closed-loop stability derived analytically. The application to a distributed thermal process shows the effectiveness of the proposed approach for suppressing nonlinear coupling and external disturbances and its feasibility for the control of unknown non-affine nonlinear discrete-time MIMO state space processes.  相似文献   

6.
In this work a practical study evaluates two parametric modelling approaches — linear and non-linear (neural) — for automatic adaptive control. The neural adaptive control is based on a developed hybrid learning technique using an adaptive (on-line) learning rate for a Gaussian radial basis function neural network. The linear approach is used for a self-tuning pole-placement controller. A selective forgetting factor method is applied to both control schemes: in the neural case to estimate on-line the second-layer weights and in the linear case to estimate the parameters of the linear process model. These two techniques are applied to a laboratory-scaled bench plant with the possibility of dynamic changes and different types of disturbances. Experimental results show the superior performance of the neural approach particularly when there are dynamic changes in the process.  相似文献   

7.
将模糊神经网络应用于传统线性积分自适应控制,构造了一类模糊神经自适应方法,用于消除非线性系统响应偏差.模糊神经网构成直接非线性自适应控制器.对线性及非线性对象的仿真控制以及与经典自适应控制的比较,表明了模糊神经自适应控制器的有效性.  相似文献   

8.
基于阻尼最小二乘法的神经网络预测偏差补偿自校正控制器   总被引:20,自引:0,他引:20  
本文提出一种神经网络预测偏差补偿自校正控 制器,用线性模型的预测控制去控制非线性系统,其预测偏差用神经网络进行补偿.线性模 型的辨识和神经网络的学习均采用阻尼最小二乘法.仿真结果表明,用这种控制器能有效地 控制非线性系统,并具有超调小,鲁棒性好的特点.  相似文献   

9.
It is well known that if we intend to use a minimum variance control strategy, which is designed based on a model obtained from an identification experiment, the best experiment which can be performed on the system to determine such a model (subject to output power constraints, or for some specific model structures) is to use the true minimum variance controller. This result has been derived under several circumstances, first using asymptotic (in model order) variance expressions but also more recently for ARMAX models of finite order. In this paper we re-approach this problem using a recently developed expression for the variance of parametric frequency function estimates. This allows a geometric analysis of the problem and the generalization of the aforementioned finite model order ARMAX results to general linear model structures.  相似文献   

10.
This paper presents a discrete-time direct current (DC) motor torque tracking controller, based on a recurrent high-order neural network to identify the plant model. In order to train the neural identifier, the extended Kalman filter (EKF) based training algorithm is used. The neural identifier is in series-parallel configuration that constitutes a well approximation method of the real plant by the neural identifier. Using the neural identifier structure that is in the nonlinear controllable form, the block control (BC) combined with sliding modes (SM) control techniques in discrete-time are applied. The BC technique is used to design a nonlinear sliding manifold such that the resulting sliding mode dynamics are described by a desired linear system. For the SM control technique, the equivalent control law is used in order to the plant output tracks a reference signal. For reducing the effect of unknown terms, it is proposed a specific desired dynamics for the sliding variables. The control problem is solved by the indirect approach, where an appropriate neural network (NN) identification model is selected; the NN parameters (synaptic weights) are adjusted according to a specific adaptive law (EKF), such that the response of the NN identifier approximates the response of the real plant for the same input. Then, based on the designed NN identifier a stabilizing or reference tracking controller is proposed (BC combined with SM). The proposed neural identifier and control applicability are illustrated by torque trajectory tracking for a DC motor with separate winding excitation via real-time implementation.  相似文献   

11.
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems com- posed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.  相似文献   

12.
The objective of this paper is to find an adaptive control strategy which would enable us to estimate the parameters of the ARMAX model as accurately as possible, along with consuming less controlling energy, while keeping the output of the system below a specified level of variability. Using the self-tuning tracker, this paper establishes global convergence of a stochastic adaptive control algorithm for discrete linear system, and the adaptive controller may converge to the one-step-ahead optimal controller at the same time.  相似文献   

13.
This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.  相似文献   

14.
Y.M. Chan  J.B. Cruz 《Automatica》1983,19(3):237-245
The optimization of a class of linear discrete-time stochastic systems with unknown parameters and multiple decision-makers or controllers each having his own single-stage quadratic objective is considered. Based on a centralized information pattern, a steady-state solution is obtained for the stochastic adaptive leader-follower game problem. It is shown that this class of leader-follower game problems can be transformed to an equivalent class of multiple-input-multiple-output self-tuning control problems with a single decision-maker. The convergence of the multiple-input-multiple-output self-tuning controller is established and applied to the leader-follower game. A numerical simulation illustrates the proposed self-tuning algorithm for an adaptive leader-follower strategy.  相似文献   

15.
For the linear discrete time-invariant stochastic system with correlated noises,and with unknown model parameters and noise statistics,substituting the online consistent estimators of the model paramet...  相似文献   

16.
This paper proposes a neural control integrating stereo vision feedback for driving a mobile robot. The proposed approach consists in synthesizing a suitable inverse optimal control to avoid solving the Hamilton Jacobi Bellman equation associated to nonlinear system optimal control. The mobile robot dynamics is approximated by an identifier using a discrete-time recurrent high order neural network, trained with an extended Kalman filter algorithm. The desired trajectory of the robot is computed during navigation using a stereo camera sensor. Simulation and experimental result are presented to illustrate the effectiveness of the proposed control scheme.  相似文献   

17.
A novel adaptive filtering technique is described for a class of systems with unknown disturbances. The estimator includes both a self-tuning filter and a Kalman filter. The state estimates are employed in a closed-loop feedback control scheme which is designed via the usual linear quadratic approach. The approach was developed for application to the dynamic ship positioning control problem and has the advantage that existing nonadaptive Kalman filtering systems may be easily modified to include the self-tuning feature.  相似文献   

18.
This paper presents a new fault tolerant control scheme for unknown multivariable stochastic systems by modifying the conventional state-space self-tuning control approach. For the detection of faults, a quantitative criterion is developed by comparing the innovation process errors occurring in the Kalman filter estimation algorithm, which, for faulty system recovery, a weighting matrix resetting technique is developed by adjusting and resetting the covariance matrices of the parameter estimate obtained in the Kalman filter estimation algorithm to improve the parameter estimation of the faulty systems. The proposed method can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection. The modified state-space self-tuning control scheme can be applied to the multivariable stochastic faulty system without requiring prior knowledge of system parameters and noise properties.  相似文献   

19.
提出一种非线性系统鲁棒自校正控制间接算法.借助于神经网的作用,有效地辨识系统的建模误差,其辨识结果在控制算法中加以补偿,于是,使基于低阶线性模型的自校正控制算法有效地应用于复杂的非线性系统.文中给出了算法的鲁棒性分析和仿真结果.  相似文献   

20.
In this paper, we consider indirect adaptive pole-placement control (APPC) of linear multivariable stochastic systems. Instead of the canonical representation often used in the literature, we propose using a non-minimal but otherwise uniquely identifiable pseudo-canonical parameterization that is more suitable for multivariable ARMAX model identification. To identify the plant, we use the weighted extended least-squares (WELS) algorithm, a least-squares method with slowly decreasing weights which was introduced in Bercu (1995). The pole-placement controller parameters are then calculated by using a certain perturbation of the parameter estimates such that the linear models corresponding to the perturbed estimates are uniformly controllable and observable. We prove that with a reasonable amount of prior information, the resulting APPC scheme is globally stabilizing and asymptotically self-tuning regardless of the degree of persistency of external excitation. These results represent the most complete study of stochastic multivariable APPC systems to this date  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号