首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
非线性离散系统的近似最优跟踪控制   总被引:3,自引:0,他引:3  
研究非线性离散系统的最优跟踪控制问题. 通过在由最优控制问题所导致的非线性两点边值问题中引入灵敏度参数, 并对它进行Maclaurin级数展开, 将原最优跟踪控制问题转化为一族非齐次线性两点边值问题. 得到的最优跟踪控制由解析的前馈反馈项和级数形式的补偿项组成. 解析的前馈反馈项可以由求解一个Riccati差分方程和一个矩阵差分方程得到. 级数补偿项可以由一个求解伴随向量的迭代算法近似求得. 以连续槽式反应器为例进行仿真验证了该方法的有效性.  相似文献   

2.
An RBF neural network-based adaptive control is proposed for Single-Input and Single-Output (SISO) linearisable nonlinear systems in this paper. It is shown that a SISO nonlinear system is first linearised by using the differential geometric approach in the state space, and the linearised nonlinear system is then treated as a partially known system. The known dynamics are used to design a nominal feedback controller to stabilise the nominal system, and an adaptive RBF neural network-based compensator is then designed to compensate for the effects of uncertain dynamics. The main function of the RBF neural network in this work is to adaptively learn the upper bound of the system uncertainty, and the output of the neural network is then used to adaptively adjust the gain of the compensator so that the strong robustness with respect to unknown dynamics can be obtained, and the tracking error between the plant output and the desired reference signal can asymptotically converge to zero. A simulation example is performed in support of the proposed scheme.  相似文献   

3.
利用神经网络和滑模控制,研究带有饱和输入的一类非线性系统。为了便于问题分析,引入饱和约束模型输出与控制输入的差值这个变量,分5种情况讨论,求得神经网络权值的在线调节律,得到保证闭环系统稳定的控制律。利用Lyapunov函数,证明了闭环系统的稳定性;仿真实验说明了算法的有效性。  相似文献   

4.
一类非线性离散系统自适应准滑模控制   总被引:1,自引:0,他引:1  
针对一般非线性离散时间系统的不确定性和扰动抑制问题, 提出一种新的自适应准滑模控制算法. 算法包括两部分, 其一是基于紧格式动态线性化模型的自适应准滑模控制器设计, 其中动态线性化方法中“伪偏导数”的估计算法仅依赖于系统I/O 实时量测值. 其二是采用径向基神经网络估计器来估计系统的综合不确定性. 理论分析证明了系统的BIBO稳定性. 仿真结果验证了所提算法的有效性.  相似文献   

5.
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.  相似文献   

6.
受扰非线性离散系统的前馈反馈最优控制   总被引:1,自引:2,他引:1  
利用逐次逼近法研究含外部扰动的非线性离散系统的线性二次型前馈反馈最优控制问题.首先将系统的最优控制问题转化为非线性两点边值问题族.其次,构造了该问题族的由精确线性项和非线性补偿项组成的解序列,并证明了解序列一致收敛到系统的最优解.最后,通过截取最优控制序列解中非线性补偿项的有限项,得到系统的前馈反馈次优控制(FFSOC)律及设计算法.仿真算例表明,该算法容易实现,且对抑制外部扰动的鲁棒性优于经典的反馈次优控制(FSOC).  相似文献   

7.
针对一类带有扰动、输入约束和凸多面体不确定性的区间时滞离散非线性系统, 提出一种鲁棒模型预测控制方法. 一方面, 利用min-max 模型预测控制求解鲁棒模型预测控制器, 以研究鲁棒预测控制在范数有界意义下的扰动抑制问题; 另一方面, 充分利用时滞的上下界信息构造Lyapunov 函数以得到控制器存在的充分条件. 最后给出了闭环系统鲁棒稳定性证明.  相似文献   

8.
Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e., the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A simulation example is given to illustrate the effectiveness of the proposed scheme.  相似文献   

9.
In this study, the problem of event-triggered-based adaptive control (ETAC) for a class of discrete-time nonlinear systems with unknown parameters and nonlinear uncertainties is considered. Both neural network (NN) based and linear identifiers are used to approximate the unknown system dynamics. The feedback output signals are transmitted, and the parameters and the NN weights of the identifiers are tuned in an aperiodic manner at the event sample instants. A switching mechanism is provided to evaluate the approximate performance of each identifier and decide which estimated output is utilised for the event-triggered controller design, during any two events. The linear identifier with an auxiliary output and an improved adaptive law is introduced so that the nonlinear uncertainties are no longer assumed to be Lipschitz. The number of transmission times are significantly reduced by incorporating multiple model schemes into ETAC. The boundedness of both the parameters of identifiers and the system outputs is demonstrated though the Lyapunov approach. Simulation results demonstrate the effectiveness of the proposed method.  相似文献   

10.
对于一类带有内动态的单输入-单输出不确定离散非线性系统,基于滑模预测控制技术设计了一个控制器.通过反馈校正和滚动优化技术,可以及时补偿不确定性的影响,提高了匹配和不匹配不确定项的鲁棒性.然后,通过滚动优化技术得到期望的滑模控制律.特别地,通过预测控制,滑模控制的抖振现象可以消除.最后,在不确定项的界未知的情况下,得到闭环系统的所有信号都是有界的,并且跟踪误差是鲁棒稳定的.仿真例子说明所提出控制方法的有效性.  相似文献   

11.
非线性系统神经网络自适应控制的发展现状及展望   总被引:1,自引:0,他引:1  
简要回顾了神经网络控制及其应用的发展历程,重点论述了人们在连续、离散时间非线性系统的神经网络以及神经模糊稳定自适应控制研究方面所取得的主要进展,探讨了神经网络自适应控制研究方面存在的主要问题及解决问题的基本途径.作为当前解决神经网络自适应控制问题的途径之一,介绍了近来人们对二阶模糊神经网络以及量子神经网络的研究.最后,总结并指出了这一领域下一步的发展方向和有待解决的新课题.  相似文献   

12.
In this paper, the regulation problem of a class of nonlinear singularly perturbed discrete-time systems is investigated. Using the theory of singular perturbations and time scales, the nonlinear system is decoupled into reduced-order slow and fast (boundary layer) subsystems. Then, a composite controller consisting of two sub-controllers for the slow and fast subsystems is developed using the discrete-time state-dependent Riccati equation (D-SDRE). It is proved that the equilibrium point of the original closed-loop system with a composite controller is locally asymptotically stable. Moreover, the region of attraction of the closed-loop system is estimated by using linear matrix inequality. One example is given to illustrate the effectiveness of the results obtained.  相似文献   

13.
非线性离散时间系统的自适应模糊补偿控制   总被引:1,自引:0,他引:1  
针对一类非线性离散时间系统,提出一种自适应模糊逻辑补偿控制方案.控制律由跟踪控制律和逼近误差补偿控制律两部分组成,利用模糊逻辑系统对系统参数扰动和外界干扰进行自适应补偿,由模糊滑模控制律实现对模糊逻辑系统逼近误差的进一步补偿.所设计的控制器可保证闭环系统一致最终有界.将该控制器用于月球探测车动态转向系统中,仿真结果表明了该方法的有效性.  相似文献   

14.
In this paper, a novel robust adaptive neural control scheme is proposed for a class of uncertain multi-input multi-output nonlinear systems. The proposed scheme has the following main features: (1) a kind of Hurwitz condition is introduced to handle the state-dependent control gain matrix and some assumptions in existing schemes are relaxed; (2) by introducing a novel matrix normalisation technique, it is shown that all bound restrictions imposed on the control gain matrix in existing schemes can be removed; (3) the singularity problem is avoided without any extra effort, which makes the control law quite simple. Besides, with the aid of the minimal learning parameter technique, only one parameter needs to be updated online regardless of the system input–output dimension and the number of neural network nodes. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

15.
一类非线性离散系统的直接自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类含延迟非线性离散系统,提出了一种直接自适应模糊控制器设计的新方案.将系统用T-S模糊模型来表示,并基于并行分布补偿(PDC)基本思想设计了一种具有未知参数的模糊控制器,同时采用梯度下降算法对该控制器的参数进行在线辨识.通过输入到状态稳定(ISS)方法,证明了系统输出和参考输出的误差有界且满足一定的平均性能.仿真表明本方法的有效性.  相似文献   

16.
本文针对一类执行器受Preisach磁滞约束的不确定非线性系统, 提出一种基于神经网络的直接自适应控制 方案, 旨在解决系统的预定精度轨迹跟踪问题. 由于Preisach算子与系统动态发生耦合, 导致算子输出信号不可测 量, 给磁滞的逆补偿造成了困难. 为解决此问题, 本文首先将Preisach模型进行分解, 以提取出控制命令信号用于 Backstepping递归设计, 并在此基础上融合一类降阶光滑函数与直接自适应神经网络控制策略, 形成对磁滞非线性 和被控对象非线性的强鲁棒性能, 且所设计方案仅包含一个需要在线更新的自适应参数, 同时可保证Lyapunov函数 时间导数的半负定性. 通过严格数学分析, 已证明该方案不仅保证闭环系统所有信号均有界, 而且输出跟踪误差随 时间渐近收敛到用户预定区间. 基于压电定位平台的半物理仿真实验进一步验证了所提出控制方案的有效性.  相似文献   

17.
针对一类未知的纯反馈非线性离散系统,提出了基于反步法设计的自适应神经网络控制方法.为避免反步法设计中可能出现的因果矛盾问题,首先将系统进行等价变换,然后利用隐函数定理证实了理想虚拟控制输入和实际控制输入的存在性.利用高阶神经网络估计这些控制量,并基于反步法设计自适应神经网络控制系统,证明了闭环系统半全局一致最终有界.仿真结果验证了所提出方法的有效性.  相似文献   

18.

分析一类非线性离散奇异摄动系统的降阶组合优化控制器的合理性, 即降阶组合控制器与原始高阶优化控制器之间的关系. 基于快、慢子系统的解耦, 分别对快、慢子系统设计子优化控制器, 并进一步提出作用于原高阶系统的组合优化控制器. 对原高阶系统设计传统高阶优化控制器, 提出组合优化控制器近似等于传统高阶优化控制器的充分条件. 最后通过仿真验证了所得到结论的正确性.

  相似文献   

19.
This paper investigates a sliding-mode model predictive control (MPC) algorithm with auxiliary contractive sliding vector constraint for constrained nonlinear discrete-time systems. By adding contractive constraint into the optimization problem in regular sliding-mode MPC algorithm, the value of the sliding vector is decreased to zero asymptotically, which means that the system state is driven into a vicinity of sliding surface with a certain width. Then, the system state moves along the sliding surface to the equilibrium point within the vicinity. By applying the proposed algorithm, the stability of the closed-loop system is guaranteed. A numerical example of a continuous stirred tank reactor (CSTR) system is given to verify the feasibility and effectiveness of the proposed method.  相似文献   

20.
This paper investigates the problem of adaptive neural control design for a class of single‐input single‐output strict‐feedback stochastic nonlinear systems whose output is an known linear function. The radial basis function neural networks are used to approximate the nonlinearities, and adaptive backstepping technique is employed to construct controllers. It is shown that the proposed controller ensures that all signals of the closed‐loop system remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. The salient property of the proposed scheme is that only one adaptive parameter is needed to be tuned online. So, the computational burden is considerably alleviated. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号