共查询到20条相似文献,搜索用时 15 毫秒
1.
研究非线性离散系统的最优跟踪控制问题. 通过在由最优控制问题所导致的非线性两点边值问题中引入灵敏度参数, 并对它进行Maclaurin级数展开, 将原最优跟踪控制问题转化为一族非齐次线性两点边值问题. 得到的最优跟踪控制由解析的前馈反馈项和级数形式的补偿项组成. 解析的前馈反馈项可以由求解一个Riccati差分方程和一个矩阵差分方程得到. 级数补偿项可以由一个求解伴随向量的迭代算法近似求得. 以连续槽式反应器为例进行仿真验证了该方法的有效性. 相似文献
2.
基于神经网络的酵母流加发酵过程最优重复控制新方法 总被引:1,自引:0,他引:1
本文提出了基于神经网络的酵母流加发酵过程最优重复控制的两种新方法,方法1 采用状态反馈控制律,用误差反传法学习过程和控制器神经网络参数。方法2 采用直接最优控制律,用误差反传法学习过程神经网络参数和控制作用,两种方法都具有很强的自适应能力,在控制方案实施时,采用了动态重复控制方式,使得本文控制方法具有类似于预测控制的优点,鲁棒性好,将其用于醇母流加发酵过程的优化控制,仿真结果令人满意,实验证明按最优流加轨线操作,可使产率提高26%,糖蜜消耗减少4%,本文方法为那些用传统方法难以建模的生化过程的优化控制提供了一条新途径。 相似文献
3.
王鼎;王将宇;乔俊飞 《自动化学报》2024,50(5):980-990
自适应评判技术已经广泛应用于求解复杂非线性系统的最优控制问题, 但利用其求解离散时间非线性随机系统的无限时域最优控制问题还存在一定局限性. 本文融合自适应评判技术, 建立一种数据驱动的离散随机系统折扣最优调节方法. 首先, 针对宽松假设下的非线性随机系统, 研究带有折扣因子的无限时域最优控制问题. 所提的随机系统 Q-learning 算法能够将初始的容许策略单调不增地优化至最优策略. 基于数据驱动思想, 随机系统 Q-learning 算法在不建立模型的情况下直接利用数据进行策略优化. 其次, 利用执行−评判神经网络方案, 实现了随机系统 Q-learning 算法. 最后, 通过两个基准系统, 验证本文提出的随机系统 Q-learning 算法的有效性. 相似文献
4.
电熔镁砂熔炼过程通过电极电流熔化物料, 采用埋弧方式, 边熔化边加料, 其被控对象是以转动方向与频率为输入, 以电极电流为输出的三相电机. 本文通过引入中间变量并转化控制目标, 将电熔镁砂熔炼过程三相电极电流的复杂非线性控制问题简化为线性控制问题, 提出了一种简化的电极电流饱和约束一步最优控制方法, 并通过引入拉格朗日乘子向量和松弛向量验证了该方法的最优性. 理论分析和仿真对比实验结果表明本文所提简化控制方法的有效性和优越性. 此外, 当考虑电熔镁砂熔炼过程中存在的不可测外部干扰时, 在上述简化的电极电流饱和约束算法的基础上设计了高阶干扰观测器, 理论分析和仿真结果验证了具有高阶干扰观测器的简化算法的优越性. 相似文献
5.
This paper focuses on the distributed cooperative learning (DCL) problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs. Compared with the previous DCL works based on undirected graphs, two main challenges lie in that the Laplacian matrix of directed graphs is nonsymmetric, and the derived weight error systems exist n-step delays. Two novel lemmas are developed in this paper to show the exponential convergence for two kinds of linear time-varying (LTV) systems with different phenomena including the nonsymmetric Laplacian matrix and time delays. Subsequently, an adaptive neural network (NN) control scheme is proposed by establishing a directed communication graph along with n-step delays weight updating law. Then, by using two novel lemmas on the extended exponential convergence of LTV systems, estimated NN weights of all agents are verified to exponentially converge to small neighbourhoods of their common optimal values if directed communication graphs are strongly connected and balanced. The stored NN weights are reused to structure learning controllers for the improved control performance of similar control tasks by the “mod” function and proper time series. A simulation comparison is shown to demonstrate the validity of the proposed DCL method. 相似文献
6.
用神经网络估计模型误差的预测滤波算法 总被引:7,自引:0,他引:7
针对时不变非线性系统,提出一种用神经网络进行模型误差估计的预测滤波算法.该算法用寻优的方法离线获得与当前状态和下一步输出测量相对应的模型误差估值,并作为样本训练神经网络;实际滤波中,用训练好的神经网络进行模型误差估计.该方法与原预测滤波算法相比没有动态过程,不会因为滤波器初始误差太大而振荡或发散,且稳态精度与计算步长无关.通过对一个二阶非线性系统的仿真验证了神经一预测滤波器的优越性。 相似文献
7.
8.
本文针对具有执行器故障的一类离散非线性多输入多输出(Multi-input multi-output, MIMO)系统, 提出了一种基于事件触发的自适应评判容错控制方案. 该控制方案包括评价和执行网络. 在评价网络里, 为了缓解现有的非光滑二值效用函数可能引起的执行网络跳变问题, 利用高斯函数构建了一个光滑的效用函数, 并采用评价网络近似最优性能指标函数. 在执行网络里, 通过变量替换将系统状态的将来信息转化成关于系统当前状态的函数, 并结合事件触发机制设计了最优跟踪控制器. 该控制器引入了动态补偿项, 不仅能够抑制执行器故障对系统性能的影响, 而且能够改善系统的控制性能. 稳定性分析表明所有信号最终一致有界且跟踪误差收敛于原点的有界小邻域内. 数值系统和实际系统的仿真结果验证了该方案的有效性. 相似文献
9.
非线性系统的神经网络学习控制 总被引:2,自引:0,他引:2
主要控制了一类非线性系统的神经网络学习控制问题。讨论了以迭代学习方式训练的神经网络学习控制器,在满足一定条件,可以实现一定时间内的系统输出跟踪。 相似文献
10.
P. Dorato 《Automatica》1983,19(4):395-400
Significant theoretical developments in discrete-time control over the past 10–15 years are reviewed. Topics reviewed include optimal control, Riccati equations, controllability, stability, robustness, deadbeat control, minimum-time systems, sampling, quantization, microprocessor implementation, and stochastic systems. Emphasis is placed on topics that are peculiar to discrete-time systems and do not generalize from continuous-time theory. 相似文献
11.
利用神经网络作为非线性系统的模型,研究了一类非线性系统的神经网络自适应控制问题,设计出的自适应控制器具有如下的特点:(1)网络仅值是基于参考误差信号学习的投影算法来调节,这样可保证权值的有界性;(2)为了减小神经网络参数估计误差对跟踪误差的影响,提出了根据参考误差信号实时修正神经网络输入的方法。仿真结果对该控制方案进行了验证。 相似文献
12.
13.
14.
15.
16.
Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e.,the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences betweenthe dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. Asimulation example is given to illustrate the effectiveness of the proposed scheme. 相似文献
17.
18.
19.
ITAE最优控制系统设计 总被引:1,自引:0,他引:1
研究ITAE最优控制系统的设计问题。针对这类性能指标中含有绝对值的最优控制问题,先将镇定控制器参数化,再用L1理论将其转化为求解线性规划和代数方程。所得的控制器是有理的、线性的,易于工程实现。 相似文献
20.