首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, average-consensus control is considered for networks of continuous-time integrator agents under fixed and directed topologies. The control input of each agent can only use its local state and the states of its neighbors corrupted by white noises. To attenuate the measurement noises, time-varying consensus gains are introduced in the consensus protocol. By combining the tools of algebraic graph theory and stochastic analysis, the convergence of these kinds of protocols is analyzed. Firstly, for noise-free cases, necessary and sufficient conditions are given on the network topology and consensus gains to achieve average-consensus. Secondly, for the cases with measurement noises, necessary and sufficient conditions are given on the consensus gains to achieve asymptotic unbiased mean square average-consensus. It is shown that under the protocol designed, all agents’ states converge to a common Gaussian random variable, whose mathematical expectation is just the average of the initial states.  相似文献   

2.
This paper proposes a consensus protocol for continuous-time double-integrator multi-agent systems under noisy communication in directed topologies. Each agent’s control input relies on its own velocity and the relative positions with neighbours; it does not require the relative velocities. The agent receives its neighbours’ positions information corrupted by time-varying measurement noises whose intensities are proportional to the absolute relative distance that separates the agent from the neighbours. The consensus protocol is mainly based on the velocity damping gain to derive conditions under which the unbiased mean square χ-consensus is achieved in directed fixed topologies, and the unbiased mean square average consensus is achieved in directed switching topologies. The mean square state errors are quantified for both the positions and velocities. Finally, to illustrate the approach presented, some numerical simulations are performed.  相似文献   

3.
In this paper, the iterative learning control is introduced to solve the consensus tracking problem of a multi-agent system with random noises and measurement range limitation. A distributed learning control algorithm is proposed for all agents by utilising its nearest neighbour measured information from previous iterations. With the help of the stochastic approximation technique, we first establish the consensus convergence of the input sequences in almost sure sense for fixed topology as the iteration number increases. Then, we extend the results to switching topologies case which is dynamically changing along the time axis. Illustrative simulations verify the effectiveness of the proposed algorithms.  相似文献   

4.
Second-order consensus of multi-agent systems with noises via intermittent control is investigated in this paper. First, we study the mean-square consensus problem with communication noises by intermittent control. In order to reach consensus, under the strong directed interacted topology, by using the tools of graph theory and Lyapunov method, a distributed control protocol is proposed based on the noises and periodical intermittent information. The upper bound of noise strength in the sense of matrix norm and the lower bound of communication time duration are obtained. Second, a class of coupled system models which include delay-terms in their nonlinearities in the noisy environment is discussed. Under the balanced strongly connected topology, the sufficient conditions to achieve the mean-square average-consensus are obtained. Finally, simulations are given to illustrate the effectiveness of our results.  相似文献   

5.
In this paper, we design consensus algorithms for multiple unmanned aerial vehicles (UAV). We mainly focus on the control design in the face of measurement noise and propose a position consensus controller based on the sliding mode control by using the distributed UAV information. Within the framework of Lyapunov theory, it is shown that all signals in the closed-loop multi-UAV systems are stabilized by the proposed algorithm, while consensus errors are uniformly ultimately bounded. Moreover, for each local UAV, we propose a mechanism to define the trustworthiness, based on which the edge weights are tuned to eliminate negative influence from stubborn agents or agents exposed to extremely noisy measurement. Finally, we develop software for a nano UAV platform, based on which we implement our algorithms to address measurement noises in UAV flight tests. The experimental results validate the effectiveness of the proposed algorithms.  相似文献   

6.
This paper proposes a leader-following consensus control for continuous-time single-integrator multi-agent systems with multiplicative measurement noises and time-delays under directed fixed topologies. Each agent in the team receives imprecise information states corrupted by noises from its neighbours and from the leader; these noises are depending on the agents’ relative states information. Moreover, the information states received are also delayed by constant or time-varying delays. An analysis framework based on graph theory and stochastic tools is followed to derive conditions under which the tracking consensus of a constant reference is achieved in mean square. The effectiveness of the proposed algorithms is proved through some simulation examples.  相似文献   

7.
This work presents a novel predictive model‐based proportional integral derivative (PID) tuning and control approach for unknown nonlinear systems. For this purpose, an NARX model of the plant to be controlled is obtained and then it used for both PID tuning and correction of the control action. In this study, for comparison, neural networks (NNs) and support vector machines (SVMs) have been used for modeling. The proposed structure has been tested on two highly nonlinear systems via simulations by comparing control and convergence performances of SVM‐ and NN‐Based PID controllers. The simulation results have shown that when used in the proposed scheme, both NN and SVM approaches provide rapid parameter convergence and considerably high control performance by yielding very small transient‐ and steady‐state tracking errors. Moreover, they can maintain their control performances under noisy conditions, while convergence properties are deteriorated to some extent due to the measurement noises. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Performance of deterministic learning in noisy environments   总被引:1,自引:0,他引:1  
In this paper, based on the previous results of deterministic learning, we investigate the performance of deterministic learning in noisy environments. Two different types of noises arising in practical implementations are considered: the system noise and the measurement noise. By employing the convergence results of a class of perturbed linear time-varying (LTV) systems, the effects of these noises upon the learning performance are revealed. It is shown that while there is little effect upon the learning speed, noises have much influence on the learning accuracy. Compared with system noise, the effects of measurement noise appear to be more complicated. Under the noisy environments, robustification technique on the learning algorithm is required to avoid parameter drift. Furthermore, it is shown that additive system noise can be used to enhance the generalization ability of the RBF networks. Simulation studies are included to illustrate the results.  相似文献   

9.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a leader-following consensus control for continuous-time double-integrator multi-agent systems in noisy communication environment with a constant velocity reference state. Each follower in the team inaccurately measures its neighbors’ positions and the leader’s position if this follower has access to the leader, that the measured positions are corrupted by noises. The constant velocity of the leader is a priori well known. The consensus protocol is constructed based on algebraic graph theory and some stochastic tools. Conditions to ensure the tracking consensus in mean square are derived for both fixed and switching directed topologies. Finally, to illustrate the approach presented, some numerical simulations are carried out.  相似文献   

11.
In this paper, sampled-data based average-consensus control is considered for networks consisting of continuous-time first-order integrator agents in a noisy distributed communication environment. The impact of the sampling size and the number of network nodes on the system performances is analyzed. The control input of each agent can only use information measured at the sampling instants from its neighborhood rather than the complete continuous process, and the measurements of its neighbors’ states are corrupted by random noises. By probability limit theory and the property of graph Laplacian matrix, it is shown that for a connected network, the static mean square error between the individual state and the average of the initial states of all agents can be made arbitrarily small, provided the sampling size is sufficiently small. Furthermore, by properly choosing the consensus gains, almost sure consensus can be achieved. It is worth pointing out that an uncertainty principle of Gaussian networks is obtained, which implies that in the case of white Gaussian noises, no matter what the sampling size is, the product of the steady-state and transient performance indices is always equal to or larger than a constant depending on the noise intensity, network topology and the number of network nodes.  相似文献   

12.
This paper studies the consensus problem of continuous-time single-integrator multi-agent systems with measurement noises and time delays under directed fixed topologies. Each agent in the team receives imprecise and delayed information from its neighbours. The noises are considered white noises, and time delays are assumed to be uniform for all the received information states. An analysis framework based on graph theory and stochastic tools is followed to derive conditions under which the asymptotic unbiased mean square linear χ-consensus is achieved in directed fixed topologies having a spanning tree. Then, conditions to achieve asymptotic unbiased mean square average consensus are deduced for fixed balanced digraphs having a spanning tree. The effectiveness of the proposed algorithms is proved through some simulations.  相似文献   

13.
This paper studies a leader-following consensus problem of continuous-time double-integrator multi-agent systems with measurement noises and time-varying communication delays under directed topology. By utilising the neighbour position and velocity information, which are delayed and disturbed by measurement noises whose intensities are considered a function related to the neighbour position and velocity of agents, a distributed consensus protocol is presented, sufficient conditions of the tracking consensus in the sense of mean square are derived. Finally, the effectiveness of the proposed consensus protocol is proved by some simulations.  相似文献   

14.
This paper proposes a consensus algorithm for continuous‐time single‐integrator multi‐agent systems with relative state‐dependent measurement noises and time delays in directed fixed and switching topologies. Each agent's control input relies on its own information state and its neighbors' information states, which are delayed and corrupted by measurement noises whose intensities are considered a function of the agents' relative states. The time delays are considered time‐varying and uniform. For directed fixed topologies, condition to ensure mean square linear χ‐consensus (average consensus, respectively) are derived for digraphs having spanning tree (balanced digraphs having spanning tree, respectively). For directed switching topologies, conditions on both time delays and dwell time have been given to extend the mean square linear χ‐consensus (average consensus, respectively) of fixed topologies to switching topologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the problem of parameter estimation of stochastic liner systems with noisy input–output measurements. A new and simple estimation scheme for the variances of the white input and output measurement noises is presented, which is only based on expanding the denominator polynomial of the system transfer function and makes no use of the average least-squares errors. The attractive feature of the iterative least-square based parametric algorithm thus developed is its improved convergence property. The effectiveness of the developed identification algorithm is demonstrated through numerical illustrations.  相似文献   

16.
This paper characterises stochastic convergence properties of adjoint-based (gradient-based) iterative learning control (ILC) applied to systems with load disturbances, when provided only with approximate gradient information and noisy measurements. Specifically, conditions are discussed under which the approximations will result in a scheme which converges to an optimal control input. Both the cases of time-invariant step sizes and cases of decreasing step sizes (as in stochastic approximation) are discussed. These theoretical results are supplemented with an application on a sequencing batch reactor for wastewater treatment plants, where approximate gradient information is available. It is found that for such case adjoint-based ILC outperforms inverse-based ILC and model-free P-type ILC, both in terms of convergence rate and measurement noise tolerance.  相似文献   

17.
This paper is devoted to the stochastic bounded consensus tracking problems of second-order multi-agent systems, where the control input of each agent can only use the information measured at the sampling instants from its neighbors or the virtual leader with a time-varying reference state, the measurements are corrupted by random noises, and the signal sampling process induces the small sampling delay. The augmented matrix method, the probability limit theory and some other techniques are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. We show that the convergence of the proposed protocol simultaneously depends on the constant feedback gains, the network topology, the sampled period and the sampling delay, and that the static consensus tracking error depends on not only the above mentioned factors, but also the noise intensity and the upper bound of the velocity and the acceleration of the virtual leader. The obtained results cover no sampling delay as its one special case. Simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

18.
This article studies consensus problems of discrete‐time linear multi‐agent systems with stochastic noises and binary‐valued communications. Different from quantized consensus of first‐order systems with binary‐valued observations, the quantized consensus of linear multi‐agent systems requires that each agent observes its neighbors' states dynamically. Unlike the existing quantized consensus of linear multi‐agent systems, the information that each agent in this article gets from its neighbors is only binary‐valued. To estimate its neighbors' states dynamically by using the binary‐valued observations, we construct a two‐step estimation algorithm. Based on the estimates, a stochastic approximation‐based distributed control is proposed. The estimation and control are analyzed together in the closed‐loop system, since they are strongly coupled. Finally, it is proved that the estimates can converge to the true states in mean square sense and the states can achieve consensus at the same time by properly selecting the coefficient in the estimation algorithm. Moreover, the convergence rate of the estimation and the consensus speed are both given by O(1/t). The theoretical results are illustrated by simulations.  相似文献   

19.
A novel control strategy for multi-agent coordination with event-based broadcasting is presented. In particular, each agent decides itself when to transmit its current state to its neighbors and the local control laws are based on these sampled state measurements. Three scenarios are analyzed: Networks of single-integrator agents with and without communication delays, and networks of double-integrator agents. The novel event-based scheduling strategy bounds each agent’s measurement error by a time-dependent threshold. For each scenario it is shown that the proposed control strategy guarantees either asymptotic convergence to average consensus or convergence to a ball centered at the average consensus. Moreover, it is shown that the inter-event intervals are lower-bounded by a positive constant. Numerical simulations show the effectiveness of the novel event-based control strategy and how it compares to time-scheduled control.  相似文献   

20.
The iterative learning control (ILC) is investigated for a class of nonlinear systems with measurement noises where the output is subject to sensor saturation. An ILC algorithm is introduced based on the measured output information rather than the actual output signal. A decreasing sequence is also incorporated into the learning algorithm to ensure a stable convergence under stochastic noises. It is strictly proved with the help of the stochastic approximation technique that the input sequence converges to the desired input almost surely along the iteration axis. Illustrative simulations are exploited to verify the effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号