共查询到20条相似文献,搜索用时 102 毫秒
1.
针对目前测试性验证试验中故障样本分配考虑因素单一,分配结果不太合理,影响测试性验证评估准确度的问题,文章综合考虑故障样本分配的影响因素,提出了故障样本分配的综合加权方法;首先,在分析影响因素的基础上,明确了综合加权分配算法;然后对影响系数和影响因素的权值进行确定;最后,通过在某系统测试性验证试验中的应用表明,该方法考虑因素更加全面,与基于故障率的按比例分层抽样分配方法相比较,故障样本分配结果更加合理,测试性验证评估结果更加接近系统测试性设计的真实水平,更具有工程应用价值. 相似文献
2.
3.
故障率作为测试性验证试验故障样本分配的主要影响因素,针对一些情况下使得故障样本分配结果的合理性不足的问题,以故障检测率(Fault Detection Rate, FDR)作为验证指标,提出了一种考虑严酷度的样本故障模式选取方法。提出了基于模糊证据推理的故障模式严酷度排序解决方法。通过对相关标准中涉及的故障样本分配策略进行梳理,针对现行多因子综合加权比例分配方法不足之处,根据故障模式种类与验证样本量的数量关系,区分不同情况,借助预选样本集随机抽样、考虑严酷度的取整策略,以及动态概率调整,合理改善了故障率主体分配方案进行故障模式选取时样本分配集中不合理的状况。以某装备单元的FDR验证试验为例,验证了所提故障样本分配方法的可行性合理性。 相似文献
4.
5.
自适应加权LBP的单样本人脸识别方法 总被引:1,自引:0,他引:1
在面对单训练样本的人脸识别问题时,传统人脸识别方法识别率会下降很多,有的方法甚至不能使用。针对单样本人脸识别问题,提出了一种自适应加权LBP方法。方法既提取了纹理信息又包含了分块拓扑信息,更重要的是可以把这些特征用合适的权重融合起来。划分图像并用LBP提取纹理信息;利用方差来完成对特征的自适应加权融合;用最近邻分类器识别结果。在ORL人脸数据库上的实验结果表明,该方法可以有效地提高识别率。 相似文献
6.
k近邻方法是文本分类中广泛应用的方法,对其性能的优化具有现实需求。使用一种改进的聚类算法进行样本剪裁以提高训练样本的类别表示能力;根据样本的空间位置先后实现了基于类内和类间分布的样本加权;改善了k近邻算法中的大类别、高密度训练样本占优现象。实验结果表明,提出的改进文本加权方法提高了分类器的分类效率。 相似文献
7.
朴素贝叶斯算法是一种简单、高效且有着广泛应用的分类方法,但在现实中,条件独立性假设影响了其分类性能。为克服该问题,给出一种改进算法——样本-属性加权的朴素贝叶斯算法。首先,对属性计算相关系数得到属性权值;其次,利用属性权结合信息熵获得样本熵权,并据此加权样本以提高泛化能力;然后,给出了样本-属性加权的朴素贝叶斯算法;最后,在UCI数据集上的实验结果验证了改进算法比原算法具有更好的分类性能。 相似文献
8.
测试性验证装备的故障样本往往相互关联,全部注入费用较高、代价较大.为了降低验证试验费用,采用适当方法对故障样本进行优化分析.为提高故障检测率,提出了一种等价样本的故障样本优化方法.方法在分析故障-测试关联矩阵及其扩展、故障模式功能等价集合和故障模式测试等价集合的基础上,构建了故障样本等价集合,并进行重要度特征分析和最大熵求解,确定了最小的故障样本集合.通过对某型试验台故障样本优化实例分析,并与传统的方法进行了试验结果对比分析,使得故障样本数量、试验费用大为减少,提高了测试性验证的经济性. 相似文献
9.
入侵检测系统(IDS)已成为网络安全体系结构中的必要组成部分。在面对现代网络安全需求时,现有的入侵检测方法的可行性和持续性仍然存在提高空间,主要体现在更早地发现入侵威胁和提高入侵检测系统的检测精准度,为此提出一种基于互信息加权的集成迁移学习(ETL)入侵检测方法。首先,通过迁移策略对多组特征集进行建模;然后,使用互信息度量在迁移模型下特征集在不同域中的数据分布;最后,根据度量值对多个迁移模型进行集成加权,得到集成迁移模型。该方法通过学习新环境下的少量有标记样本和以往环境下的大量有标记样本的知识,可以建立效果优于传统非集成、非迁移的入侵检测模型。使用基准NSL-KDD数据集对该方法进行评估,实验结果表明,所提方法具有良好的收敛性能,并提高了入侵检测的精准率。 相似文献
10.
一种用于手写体汉字识别的侯选字加权多分类器集成方法 总被引:1,自引:0,他引:1
提出了一种基于候选字加权的多分类器集成方法,并将其应用于手写体汉字的识别研究中。利用4种不同的特征提取方法构造了4个独立的分类器,利用不同分类器各候选字加权处理得到的置信度函数来构成集成函数,从而将4个独立的分类器集成为一个多分类器系统。通过实验分析了几种分类器集成的方法,验证了具有一定互补性的多分类器集成对手写体汉字的识别率有较大的提高。实验结果表明,所提出的方法是行之有效的。 相似文献
11.
Sungwon Jung Byungkyu Lee Pramanik S. 《Knowledge and Data Engineering, IEEE Transactions on》2005,17(3):311-325
Broadcast has often been used to disseminate frequently requested data efficiently to a large volume of mobile units over single or multiple channels. Since mobile units have limited battery power, the minimization of the access and tuning times for the broadcast data is an important problem. There have been many research efforts that focus on minimizing access and tuning times by providing indexes on the broadcast data. We have studied an efficient index allocation method for broadcast data with skewed access frequencies over multiple physical channels which cannot be coalesced into a single high bandwidth channel. Previously proposed index allocation techniques have one of two problems. The first problem is that they require equal size for both index and data. The second problem is that their performance degrades when the number of given physical channels is not enough. These two problems result in an increased average access time for the broadcast data. To cope with these problems, we propose a tree-structured index allocation method. Our method minimizes the average access time by broadcasting the hot data and their indices more frequently than the less hot data and their indexes over the dedicated index and data channels. We present an in-depth experimental and theoretical analysis of our method by comparing it with other similar techniques. Our performance analysis shows that it significantly decreases the average access and tuning times for the broadcast data over existing methods. 相似文献
12.
13.
多Agent层次任务分配方法 总被引:2,自引:0,他引:2
提出了一种层次任务分配方法,用于解决动态环境中的任务分配问题.利用全局分配方法为Agent分配合适的任务,当环境发生变换时,通过局部调整来解决任务和Agent之间的匹配问题,使得每个Agent能够根据局部信息选择理想的任务来执行,提高了分配算法的鲁棒性和多Agent整体效用.仿真实验结果表明,该方法是可行且有效的,能够解决动态环境中的任务分配问题. 相似文献
14.
基于加权隐含狄利克雷分配模型的新闻话题挖掘方法 总被引:2,自引:0,他引:2
针对传统新闻话题挖掘准确率不高、话题可解释性差等问题,结合新闻报道的体例结构特点,提出一种基于加权隐含狄利克雷分配(LDA)模型的新闻话题挖掘方法。首先从不同角度改进词汇权重并构造复合权值,扩展LDA模型生成特征词的过程,以获取表意性较强的词汇;其次,将类别区分词(CDW)方法应用于建模结果的词序优化上,以消除话题歧义和噪声、提高话题的可解释性;最后,依据模型话题概率分布的数学特性,从文档对话题的贡献度以及话题权值概率角度对话题进行量化计算,以获取热门话题。仿真实验表明:与传统LDA模型相比,改进方法的漏报率、误报率分别平均降低1.43%、0.16%,最小标准代价平均降低2.68%,验证了该方法的可行性和有效性。 相似文献
15.
Classification is the most used supervized machine learning method. As each of the many existing classification algorithms can perform poorly on some data, different attempts have arisen to improve the original algorithms by combining them. Some of the best know results are produced by ensemble methods, like bagging or boosting. We developed a new ensemble method called allocation. Allocation method uses the allocator, an algorithm that separates the data instances based on anomaly detection and allocates them to one of the micro classifiers, built with the existing classification algorithms on a subset of training data. The outputs of micro classifiers are then fused together into one final classification. Our goal was to improve the results of original classifiers with this new allocation method and to compare the classification results with existing ensemble methods. The allocation method was tested on 30 benchmark datasets and was used with six well known basic classification algorithms (J48, NaiveBayes, IBk, SMO, OneR and NBTree). The obtained results were compared to those of the basic classifiers as well as other ensemble methods (bagging, MultiBoost and AdaBoost). Results show that our allocation method is superior to basic classifiers and also to tested ensembles in classification accuracy and f-score. The conducted statistical analysis, when all of the used classification algorithms are considered, confirmed that our allocation method performs significantly better both in classification accuracy and f-score. Although the differences are not significant for each of the used basic classifier alone, the allocation method achieved the biggest improvements on all six basic classification algorithms. In this manner, allocation method proved to be a competitive ensemble method for classification that can be used with various classification algorithms and can possibly outperform other ensembles on different types of data. 相似文献
16.
树索引空间数据进行差分隐私保护时需要产生噪声,针对现有差分隐私预算采取均匀分配方式,普通用户无法个性化选择的问题,提出等差数列分配法和等比数列分配法两种分配隐私预算策略。首先,利用树结构索引空间数据;然后,用户根据隐私保护度的需要和查询精确度的需要,个性化设置相邻两层分配的隐私预算的差值或比值,动态调整隐私预算;最后,隐私预算分配给树的每一层,实现了个性化按需分配方式。理论分析和实验结果表明,与均匀分配方式相比,这两种方法分配隐私预算更加灵活,且等比数列分配法优于等差数列分配法。 相似文献
17.
18.
《Digital Signal Processing》2006,16(2):106-119
In this paper, we present a novel image reconstruction method based on weighted least squares (WLS) objective function for positron emission tomography (PET). Unlike a usual WLS algorithm, the proposed method, which we call it SA-WLS, combines the SAGE algorithm with WLS algorithm. It minimized the WLS objective function using single coordinate descent (SCD) method in a sequence of small “hidden” data spaces (HDS). Although SA-WLS used a strategy to update parameter sequentially just like common SCD method, the use of these small HDS makes it converge much faster and produce the reconstructed images with greater contrast and detail than the usual WLS method. In order to decrease further the actual CPU time per iteration, the adaptive variable index sets were introduced to modify SA-WLS (MSA-WLS). Instead of optimizing each pixel, this MSA-WLS method sequentially optimizes many pixels located in an index set at one time. The index sets were automatically modified during each iteration step. MSA-WLS gathers the virtue of simultaneously and sequentially updating the parameters so that it achieves a good compromise between the convergence rate and the computational cost in PET reconstruction problem. Details of these algorithms were presented and the performances were evaluated by a simulated head phantom. 相似文献
19.
针对云计算环境中服务信任的随机性和模糊性以及现有基于云模型的信任评估方法对时效性和推荐信任考虑不足的问题,提出一种基于加权多属性云的服务信任评估方法。首先,引入时间衰减因子为每次服务评价赋权重,从服务的多个属性细化信任评估粒度,通过加权属性信任云逆向生成器得到直接信任云;然后,根据评价相似度确定推荐实体的推荐权重,并计算得到推荐信任云;最后综合直接信任云和推荐信任云生成综合信任云,通过云相似度计算确定服务的信任等级。仿真结果表明,所提方法明显提高了服务交互成功率并有效抑制恶意推荐,能够更加真实地反映云计算环境中服务信任情况。 相似文献