共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
基于免疫粒子群优化的最小属性约简算法 总被引:11,自引:0,他引:11
把求决策表最小属性约简问题归结为一个0 1组合优化问题,为该问题定义了合理的粒子适应度函数,提出了一种把免疫接种、免疫测试机制与二进制粒子群算法相结合的混合算法用于求解该问题。对UCI数据表的实验结果表明该算法在获得更优解的同时,仍具有较快的运算速度。多种算法的比较结果表明了该算法的有效性和可行性。 相似文献
3.
4.
5.
针对高维数据集的属性约简问题,通过改变经典粒子群算法的运动方程,并用属性依赖性和属性子集特征数构造适应度函数,提出以决策表核属性为基础的最小属性子集搜寻策略。实验结果表明,与其他类型的最小属性约简算法相比,该算法不仅能有效提高获得最小属性约简的机率,同时还大大降低了计算时间。 相似文献
6.
邹瑞芝 《数字社区&智能家居》2011,(12)
属性约简是粗糙集理论研究的重要内容之一,而求解最小约简是NP难问题。为了有效获取最优或次优约简,该文提出了一种基于遗传算法的粗糙集属性约简算法。该算法将属性核加入遗传算法的初始种群来增加收敛速度,而且在适应度函数中,通过计算决策属性对条件属性的依赖度,使该文算法既保证了全局寻优的特性又具有加强局部搜索的能力,能够获得最佳的搜索效果。该算法通过实例分析,证明是求解属性约简问题的快速有效方法。 相似文献
7.
8.
现代工业发展要求迅速、可靠地实现故障诊断。针对粒子群约简算法易陷入局部最优等问题,提出了一种多种群量子粒子群优化算法(MIQPSO)。该算法对量子粒子群算法进行分群,并通过接种疫苗,指导粒子朝更优化方向进化,提高了量子粒子群的收敛速度和寻优能力。利用UCI相关数据集,通过对Hu算法、粒子群算法、量子粒子群算法、多种群量子粒子群算法的粗糙集属性约简验证,结果表明,基于多种群量子粒子群优化的约简算法具有良好的约简效果。 相似文献
9.
基于粗糙集理论的属性约简算法 总被引:4,自引:1,他引:4
粗糙集理论是一种新的数据挖掘方法,其主要思想是保持分类能力不变的情况下,通过属性约简,达到发掘知识并简化知识的目的.从大量数据发现知识时,属性约简是一个关键问题.在理解和分析基于粗糙集理论的数据挖掘算法基础上,提出了一个基于属性依赖度的属性约简算法.实验结果表明,该算法能更有效地对决策系统进行约简. 相似文献
10.
属性约简是粗糙集理论中的核心问题,为有效进行属性的最小约简,将一种GA-PSO混合算法应用于属性约简。该算法在保证寻优能力的前提下,增加群体的多样性,避免陷入局部最优,同时,在适应度函数中加入罚函数。实验结果证明该算法能有效地进行属性约简,取得良好的约简结果。 相似文献
11.
提出一种基于病毒协同进化微粒群的最小属性约简算法.在算法中,进化在宿主与病毒种群之间协同进行,通过满足约简分辨力不变条件的最优病毒种子复制操作产生病毒库,病毒通过感染操作在宿主种群完成横向局部搜索,以提高算法局部精确解搜索能力;同时通过删减操作完成自我更新,实现增加局部搜索范围的目的.最后对UCI数据集进行属性约简实验,结果表明该算法在搜索最小属性约简解方面优于其他进化算法,同时收敛速度及寻优效率也有较大提高. 相似文献
12.
一种基于粗集理论的属性约简改进算法 总被引:11,自引:0,他引:11
利用粗集理论中属性的依赖度和重要度性质,提出一种对数据属性进行约简的改进算法,对该算法进行分析,并运用一个简单的例子对该算法的有效性进行验证。 相似文献
13.
14.
针对粗糙集理论核心内容之一的知识约简问题,提出了一种基于遗传算法的粗糙集属性约简算法。利用条件熵计算属性间的相关性,并将其引入到适值函数中,可以保证所求约简含有较少的属性而且属性间的相关性较小。实验证明,它可以得到比较理想的结果,对UCI机器学习数据集的测试结果也验证了算法的有效性。 相似文献
15.
为了提高基于群体智能的粗糙集最小属性约简算法的求解质量和计算效率,提出一个结合长期记忆禁忌搜索方法的粒子群并行子群优化算法.并行的各子群不仅具有禁忌约束,而且包含多样性和增强性策略.由于并行的子群共同陷入局部最优的概率小于一个粒子群陷入局部最优的概率,该算法可提高获得全局最优的可能性,并减少受初始粒子群体的影响.多个UC I数据集的实验计算表明,提出的算法相对于其他的属性约简算法具有更高的概率搜索到最小粗糙集约简.因此所提出的算法用于求解最小属性约简问题是可行和较为有效的. 相似文献
16.
基于粗糙集和信息增益的属性约简改进方法 总被引:2,自引:0,他引:2
针对属性过多对于有效的数据挖掘很不利以及约简中差别矩阵的产生会占用较大存储空间的问题,提出了一种基于粗糙集和信息增益的属性约简改进算法.该算法首先采用信息增益技术对决策表属性进行相关分析,删除部分冗余属性,减小属性约简的复杂度,然后直接从决策表中提取出分明函数,求出属性约简.由于避免了分明矩阵的生成,因此该算法不仅节约了时间和空间,而且提高了效率. 相似文献
17.
汪凌 《计算机工程与应用》2013,49(21):29-32
提出一种基于改进粒子群的连续属性离散化算法。该算法结合集群智能优化理论和粗糙集理论,将各属性离散化分割点初始化为粒子群体,通过粒子间的相互作用寻求最优离散化分割点。将提出的离散化算法应用于UCI数据集实验中,实验结果表明,该算法能使决策系统的信息损失降低到最小,并可获取更为简洁的决策规则。 相似文献
18.
针对K-medoids算法的全局搜索能力弱和迭代计算过程计算量大的不足,提出了一种改进的基于粒子群的粗糙K-medoids算法。该算法通过粒子群算法来改善K-medoids全局搜索能力,通过计算样本集的相异度矩阵来简化粒子群编码,引入粗糙集理论处理边界模糊数据,并利用记忆技术对K-medoids的迭代过程进行优化,降低算法的复杂度。通过对UCI中的Iris、Mushroom数据集测试,该算法的准确率提高,运行时间减少。 相似文献