共查询到16条相似文献,搜索用时 78 毫秒
1.
图像处理是获取信息的重要途径且被广泛地应用到军事、医学和交通等重要领域,图像分割在图像处理中占有重要地位。针对图像处理分割过程中的不确定性,为获取更加精确的图像分割效果,提出变精度最小平方粗糙熵和粒子群的图像单阈值分割算法。该单阈值分割算法用变精度粗糙集表示图像,以变精度最小平方粗糙熵求解最佳分割阈值,借助粒子群优化算法提高分割效率。实验表明,该单阈值分割算法明显优于最大平均信息熵法,且说明了变精度粗糙熵能够处理图像分割过程出现的不确定性。 相似文献
2.
3.
结合变精度粗糙熵和遗传算法的图像阈值分割方法 总被引:1,自引:0,他引:1
将图像用变精度粗糙集表示,提出一种适合于图像分割的粗糙熵度量.结合遗传算法,提高了求解最大粗糙熵的效率.给出了基于变精度粗糙熵的图像阈值分割方法,并通过精度的调节获取所需要的最佳分割阈值,以实现图像的目标提取.仿真实验结果表明,所提出的算法具有很好的图像分割效果和灵活性. 相似文献
4.
针对其他算法分割图像耗时较多的问题,结合粒子群优化算法和变精度粗糙集理论提出了一种新的分割算法.利用粗糙集理论将图像按照一定的规则进行划分,找出图像的边界.利用变精度粗糙集理论对图像子块的边界进行计算,利用粒子群优化算法寻找最佳的β及其对应的灰度值,并对图像进行分割.通过对测试图像进行Matlab仿真,验证了算法的效果... 相似文献
5.
变精度粗糙集是解决模糊决策问题的重要工具,图像边缘信息本身就具有一定的不确定性和模糊性,而图像分割的效果直接依赖于对图像边缘像素的判断精度,因此变精度粗糙集可以更精确地表达图像边缘。将经典图像粗糙集模型扩展到图像变精度粗糙集模型,并将其应用于灰度图像边缘判定问题,利用变精度粗糙集的上下近似定义,构造了变精度灰色形态学算子,依据灰度图像粗糙熵的定义,提出一种基于VPRS粗糙熵的图像分割算法。针对噪声图像,该方法用变精度粗糙集模型判断目标、背景和边界像素集,在不同参数下判断近似集时容忍部分噪声点的存在,从而可获得较好的灰色边缘图像。实验结果说明,由于变精度灰度形态学算子避免了复杂参数优化过程,算法时间执行效率高;同时由于粗糙形态学算子对噪声的优良处理能力,新算法具有较好的噪声鲁棒性。 相似文献
6.
基于粒子群优化算法的最佳熵阈值图像分割 总被引:1,自引:0,他引:1
研究图像的空间信息和灰度的信息图像分割,从中提取感兴趣的目标.针对传统阈值算法虽然考虑了图像的空间信息,但是由于解空间维数增加,搜索范围增大,导致了计算时间延长,求解最优阈值的速度较低,同时传统二维熵的计算中只考虑了像素的概率,忽略了灰度的概率,导致分割不准确.为了充分利用灰度图像的灰度信息和空间信息,提高分割精确度和最优阈值的求解速度,提出一种基于粒子群算法的阈值分割方法(PSO-SDAIVE算法).算法对传统的二维直方图进行改进,生成差值属性灰度直方图,同时对灰度均值和二维熵的计算进行改进,生成空间差值属性信息值熵(SDAIVE),最后用粒子群算法来搜索SDAIVE的最大值.对头部CT图像进行分割进行了仿真,实验结果表明,能够对图像进行准确的分割,而且运行时间明显较短,证明粒子群优化的图像分割算法是可行和有效的. 相似文献
7.
吴涛 《中国图象图形学报》2014,19(1):1-10
摘 要:目的:图像阈值化将灰度图像转换为二值图像,被广泛应用于多个领域。因实际工程应用中固有的不确定性,自动阈值选择仍然是一个极具挑战的课题。针对图像自动阈值化问题,提出了一种利用粗糙集的自适应方法。方法:该方法分析了基于粗糙集的图像表示框架,建立了图像粗糙粒度与局部灰度标准差的相互关系,通过最小化自适应粗糙粒度准则获得最优的划分粒度。进一步在该粒度下构造了图像目标和背景的上下近似集及其粗糙不确定度,通过搜索灰度级最大化粗糙熵获得图像最优灰度阈值,并将图像目标和背景的边界作为过渡区,利用其灰度均值作为阈值完成图像二值化。结果:对所提出的方法通过多个图像分三组进行了实验比较,包括三种经典阈值化方法和一种利用粗糙集的方法。其中,所提出的方法生成的可视化二值图像结果远远优于传统粗糙集阈值化方法。此外,也采用了误分率、平均结构相似性、假阴率和假阳率等指标进一步量化评估与比较相关实验结果。定性和定量的实验结果表明,所提出方法的图像分割质量较高、性能稳定。结论:所提出的方法适应能力较好,具有合理性和有效性,可以作为现有经典方法的有力补充。 相似文献
8.
介绍了Ziarko’s变精度粗糙集模型和粗糙模糊集模型,找出了它们的不足。基于支集相对错误分类率及误差参数β(0≤β<0.5),提出了变精度粗糙模糊集模型,讨论了模型中β上、下近似算子的性质;分析了该模型与Ziarko’s变精度粗糙集模型和粗糙模糊集模型的关系;最后给出了该模型中近似约简的定义和方法,并通过实例分析说明了约简算法的有效性。 相似文献
9.
该文研究了基于二维模糊信息熵的图像分割方法,针对二维模糊信息熵图像分割方法求取阈值时存在的计算复杂、时间长、实用性差等问题,提出了基于优化微粒群算法的二维最大熵图像分割方法。DPSO算法对图像的二维阈值空间进行全局搜索,并将搜索得到的二维熵最大值所对应的点灰度-区域灰度均值作为阈值进行图像分割。同时,为了避免该算法收敛到局部最优解的问题,在算法中引入了变异策略。通过实验显示了该算法在收敛性和计算效率上较QPSO在内其它优化算法具有更好的优越性。 相似文献
10.
针对现有阈值分割算法利用穷举搜索寻找最优阈值而造成的计算成本较大的问题,提出了一种基于粒子群优化算法和模糊熵的多级阈值图像分割算法。图像分割是图像分析中非常重要的预处理步骤,在提出的方法中,首先选择香农熵和模糊熵作为优化技术的目标函数;然后建立一种基于粒子群优化算法的多层次图像阈值分割,通过最大化香农熵或模糊熵进行图像分割。最后从图像分割数据库中选取Lena、baboon和airplane作为测试图像进行性能分析(包括鲁棒性、效率和收敛性),并与现有的几种阈值分割算法进行比较。结果显示,提出的算法得到了更高PSNR值和更少的分类误差,证明了该算法是一种高效的多级阈值图像分割算法。 相似文献
11.
12.
多重变精度粗糙集模型 总被引:1,自引:0,他引:1
为了解决Zaike变精度粗糙集模型的论域划分不能重叠的问题,基于多重集合,对Zaike变精度粗糙集模型的论域进行了扩展,提出了基于多重集的多重变精度粗糙集模型,给出了该模型的完整定义、相关定理和重要性质,其中包括多重论域定义、多重变精度近似集的定义及其性质的证明、与Zaike变精度粗糙集的关系等。这些定义、定理和性质与Zaike变精度粗糙集既有区别又有联系。多重变精度粗糙集可充分反映知识颗粒间的重叠性,对象的重要度差别及其多态性,这样有利于用粗糙集理论从保存在关系数据库中的具有一对多、多对多依赖性的且认为不相关的数据中发现相关知识。 相似文献
13.
随着信息大爆炸时代的到来,数据集的巨大化和数据集结构的复杂化已经成为近似计算中不能忽视的问题,而动态计算是解决这些问题的一种行之有效的途径。对现有的应用于经典多粒度粗糙集动态近似集更新方法进行了改进,提出了应用于变精度多粒度粗糙集(VPMGRS)的向量矩阵近似集计算与更新方法。首先,提出了一种基于向量矩阵的VPMGRS近似集静态计算算法;其次,重新考虑了VPMGRS近似集更新时的搜索区域,并根据VPMGRS的性质缩小了该区域,有效地提升了近似集更新算法的时间效率;再次,根据新的搜索区域,在VPMGRS近似集静态计算算法的基础上提出了一种新的VPMGRS近似集更新的向量矩阵算法;最后,通过实验验证了所提算法的有效性。 相似文献
14.
将变精度粗糙集的思想引入相容粗糙集,提出了两种变精度相容粗糙集模型,在模型I中,目标概念的下近似和边界域的交集非空;在模型II中,目标概念的下近似和边界域的交集为空。研究了两种模型中上、下近似算子的基本性质、两种模型之间的关系,以及与其他粗糙集模型之间的关系。 相似文献
15.
粗糙集理论是一种处理模糊和不确定性知识的数学工具,在人工智能及数据挖掘等众多领域已经得到了广泛的应用。在程度粗糙集和变精度粗糙集的基础上,通过引入误差参数,给出了一种新的程度变精度粗糙集模型并得出了所给模型上、下近似的一些性质。最后,通过一个具体的例子,说明了这种模型在信息系统中处理模糊和不确定性知识的可行性和有效性。 相似文献
16.
为有效解决粗糙理论在边界域不能够变化因而无法适应图像信息复杂空间的相关性和不确定性的问题,提出基于变精度分层粒度模型的图像分割算法。以知识粒度为基础,引入分类误差精度,构造出具有不同置信阈值和分类质量的图像粒度结构;根据分割精度要求,确定单元粒度层,在该粒度层分析不同灰度级的重要度,进行相应的灰度核计算;通过差异度指数定义等价关系,实现相似区域合并,完成图像分割。分割实验结果表明,该算法降低了图像信息和时间的复杂度,提高了图像分割的并行性,为知识粒度在图像处理中的应用提供了新思路。 相似文献