首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate etomidate as a neuroprotective agent in the brain stem, 33 dogs were divided into seven groups and were exposed to isolated, reversible brainstem ischemia in the presence or absence of etomidate using a newly developed canine model of brainstem ischemia. Brainstem auditory evoked potentials (BAEP) and regional cerebral blood flow were measured during ischemia and for 5 hours after reperfusion. This model provides a potential physiological environment in which to test the efficacy of putative brainstem ischemic protective strategies. During ischemia, BAEP were abolished in all animals. Without etomidate 10 minutes of ischemia was of short enough duration to allow complete recovery of BAEP. Ischemia of 20 or 30 minutes' duration resulted in minimal recovery. The dose of etomidate administered did not suppress BAEP or brainstem cardiovascular response to ischemia. In animals receiving etomidate and rendered ischemic for 20 minutes, a significant but only temporary recovery in BAEP was seen. Etomidate failed to have a significant effect in animals rendered ischemic for 30 minutes. The minimal effect of etomidate on the current measures of brainstem function is in contrast to etomidate's known suppressive effect on cortical electroencephalogram and predicts that etomidate does little to alter brainstem metabolism. Etomidate's failure to provide for permanent recovery of BAEP suggests that the drug does not give sufficient protection from ischemia to the brainstem neurons in the auditory pathway. If these auditory neurons reflect brainstem function as a whole, etomidate may not be the protective agent of choice during temporary arterial occlusion of posterior circulation.  相似文献   

2.
Hearing loss in patients with ischemic heart disease traditionally has been attributed to atheromatous cerebral vascular disease. In this study, the site of the auditory lesion was sought in patients with ischemic heart disease and perceptive hearing loss. Standard brainstem evoked response audiometry (BSER) with increased stimulation rate (ISR) were performed. Sixty-seven patients admitted for coronary artery disease were examined. Fifty-seven recordings were complete and evaluable. All the cases of hearing loss were endocochlear. In 4 patients. BSER and ISR detected subclinical retrocochlear lesions that were compatible with ischemic disease. The results suggest that selective early cochlear ischemia can occur in young persons with heart disease. The sensitivity of BSER with ISR for detecting ischemic brainstem lesions was confirmed.  相似文献   

3.
The aim of the present study was to evaluate critically the protection afforded by hypothermia against ischemic injury to the hippocampus. Hypothermic treatment was applied selectively to the brain during a 5 min carotid artery occlusion in gerbils. Following a period of recovery, two independent measures were used to assess hippocampal function: (1) an open field test of spatial memory (assessment was made during the first 10 d after ischemia) and (2) measurement of evoked potentials from area CA1 in hippocampal slices (3 weeks after the ischemic episode). The functional outcome portrayed by these tests was compared to a morphological evaluation of CA1 pyramidal cells at three rostrocaudal levels. All evaluations were carried out in the same animals. We found converging evidence that intraischemic hypothermia provides virtually complete protection against a 5 min episode of cerebral ischemia. Animals treated with hypothermia performed as well as sham-operated controls in a spatial memory task, had field potentials that were indistinguishable from normal animals and CA1 cells appeared normal when assessed histologically. In contrast, ischemia at normothermia resulted in a deficit in open field behavior (p < 0.01), diminished field potentials in stratum radiatum (p < 0.01), and near total loss of pyramidal cells in dorsal CA1 (p < 0.01). There was a remarkably high correlation between these diverse measures (r ranged from 0.7 to 0.9, p < 0.01), which provides strong support for the use of hypothermia as an effective treatment for ischemia. This study introduces a novel approach for the evaluation of putative anti-ischemic treatments: combining behavioral, electrophysiological, and histological measures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Metabolic factors that influence the transition form reversible to irreversible ischemic injury were studied in the rat liver in vivo with 31P-nuclear magnetic resonance (NMR) spectroscopy. Hepatic ischemia for 15, 35, or 65 min was produced by occlusion of the hepatic artery and portal vein in rats. Ischemia caused a rapid decrease in the ATP concentration ([ATP])-to-P(i) concentration ratio and pH within 5 min, but there was little change in these variables detectable by 31P-NMR with longer periods of ischemia. After reperfusion, the [ATP] and P(i) concentration returned toward normal values in livers exposed to 15 or 35 min of ischemia, but 65 min of ischemia were associated with only modest recovery in [ATP], and the [ATP] later decreased. Because the 31P-NMR spectrum was similar after brief compared with prolonged ischemia, it appears that neither ATP depletion, P(i) accumulation, nor acidosis predicts metabolic recovery. Hepatic intracellular NA+ was also measured in separate groups of animals by 23Na-NMR in the presence of a shift agent, thulium (III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylene-phosphonate) (TmDOTP5-), and by atomic absorption spectroscopy. Under baseline conditions, the concentration of intracellular Na+ was 15.2 mM by atomic absorption spectroscopy and 16.5 mM by 23Na-NMR. Although the 31P-NMR spectrum responded very rapidly to the onset of ischemia, intracellular Na+ concentration measured by 23Na-NMR increased gradually but steadily at approximately 1.0 mM/min during early (up to 15 min) ischemia. These observations demonstrate that a rise in intracellular Na+ does occur early ischemia, that TmDOTP5- can be applied in vivo for analysis of intracellular Na+ in the ischemic liver, and that 31P-NMR spectroscopy is very sensitive to early ischemic injury.  相似文献   

5.
H Bolay  T Dalkara 《Canadian Metallurgical Quarterly》1998,29(9):1988-93; discussion 1994
BACKGROUND AND PURPOSE: Failure of prompt motor recovery after spontaneous recirculation or thrombolytic therapy may be due to an unsatisfactory restoration of synaptic activity within cortex and/or blockade of electrical impulses at the severely ischemic subcortical region. METHODS: Afferent, efferent, and synaptic activities were focally examined within the rat sensorimotor cortex by recording the somatosensory-evoked potential (SEP) and motor area response evoked by stimulation of premotor afferents (PmEP) intracortically and the motor-evoked potential (MEP) generated by stimulation of the forelimb area from the brain stem. The effect of ischemia on electrical activity in the cortex and on axonal conduction in the subcortical region was studied differentially by proximal or distal occlusion of the MCA. RESULTS: MEP consisted of direct and indirect waves generated by direct activation of pyramidal axons and indirect excitation of pyramidal neurons via cortical synapses, respectively. MEP, PmEP, and SEP disappeared on proximal occlusion. Following reperfusion after 1 to 3 hours of ischemia, the direct wave of MEP readily recovered but the indirect wave showed no improvement, suggesting a restored axonal conduction but impaired cortical synaptic transmission. The synaptic defect, which also caused a poor recovery in PmEP and SEP and on electrocorticogram, was persistent and detected 24 hours after 1 hour of proximal occlusion. CONCLUSIONS: Our data suggest that motor dysfunction is caused by loss of cortical excitability and blockade of motor action potentials at the subcortical level during ischemia. After brief transient ischemia, axonal conduction readily recovers; however, a persistent transmission failure at cortical synapses leads to motor dysfunction.  相似文献   

6.
The object of the present study was to evaluate, with the aid of electrophysiologic techniques, the alterations induced in the auditory nervous system by exposure to toluene in a group of rotogravure workers. From 300 workers who were apparently in good health but were professionally exposed to toluene, we selected a sample of 40 workers of normal hearing ability. They were examined with an adaptation test studied by the brainstem auditory evoked potential technique with 11 and 90 stimulus repetitions a second. The results were compared with those in a group of workers of the same age but not professionally exposed to solvents. Our study demonstrates that exposure to toluene is able to induce a statistically significant alteration in the electric responses with both 11 and 90 stimuli repetitions. This alteration can be explained as a toluene exposure-induced modification, of physiologic stimulus conduction mechanisms, even in the absence of any clinical sign of neuropathy. Furthermore, such a modification could be observed in the electric responses of the entire auditory system, from peripheral receptors to brainstem nuclei.  相似文献   

7.
Ischemia leads to intracellular acidification which can be counteracted by the Na+/H+-exchange mechanism. A blockade of this exchanger has been hypothesized to cause stronger intracellular acidification in the course of ischemia thereby protecting the heart from ischemic damage. The aim of our study was to find out (1) whether in the course of ischemia areas become electrically silent, (2) whether this is enhanced by the Na+/H+-exchange inhibitor cariporide (4-Isopropyl-3-methylsulfonylbenzoyl-guanidine; Hoe 642) and whether cariporide has protective effects. Therefore, we submitted isolated rabbit hearts, perfused according to the Langendorff technique to regional ischemia (LAD occlusion) for 30 min followed by 30 min reperfusion with (n=7) or without (n=7) pre-treatment with 1 microM cariporide. Under these conditions 256-channel epicardial potential mapping was carried out. Under non-ischemic conditions cariporide did not alter any of the parameters under observation. We found that ischemia led to marked alterations of the activation pattern, to action potential shortening and a marked increase in the dispersion of refractoriness. In the ischemic region there was a significant ST deviation from the isoelectrical line (control 32+/-10; 30 min ischemia: 290+/-35 arbitrary units [a.u.]). This was markedly reduced by cariporide (control 39+/-10; 30 min ischemia: 170+/-25 a.u.). The increase in dispersion by ischemia (by 50+/-5 ms) was significantly counteracted by cariporide (increased dispersion by 20+/-4 ms). In a similar way the alteration of the activation pattern was antagonized. Under the influence of cariporide we found a lower increase in the left ventricular enddiastolic pressure, and a significantly slower recovery of the action potential duration. After 30 min of ischemia 24+/-5 (control series) 24.5+/-5 mm2 (cariporide) became electrically silent. In a second series of experiments the incidence of arrhythmia was assessed: we found ventricular fibrillation in 6/7 untreated control hearts and in 4/7 cariporide treated hearts. In a third series of experiments we determined the intracellular [ATP] after 30 min of LAD occlusion using a histochemical method. We observed a decrease in [ATP] in the ischemic region as compared to the non-ischemic right ventricular wall, which was less pronounced in cariporide-treated hearts. Thus, we conclude that (1) cariporide protects the heart from ischemic damage and (2) at least under these conditions an enlargement of the electrically silent area did not occur.  相似文献   

8.
Ca2+ influx through glutamate receptors (GluRs) is thought to play a crucial part in developmental processes and neuronal plasticity. Here we have examined the spatiotemporal distribution of Ca2+-permeable GluRs in auditory brainstem neurons of the rat from birth to adulthood, using the cobalt-staining technique of Pruss and collaborators. In slices of young adult rats, 1 mM glutamate evoked intense cobalt uptake in subsets of neurons in the ventral cochlear nuclei, the medial nucleus of the trapezoid body, the lateral and the medial superior olive, and the lateral lemniscal nuclei. Neurones in the central nucleus of the inferior colliculus, and thalamic auditory nuclei appear to express few, if any, Ca2+-permeable GluRs. Thus, in adults, Ca2+-permeable GluRs are present in neurons of almost all main relay stations of the auditory brainstem. During development, cobalt-stained cells first appeared at about hearing onset (at postnatal day 12 [P12]). At P16, staining levels were highest and the pattern of distribution was already adult-like. The staining intensity slightly declined during the fourth postnatal week. In contrast, Ca2+-permeable receptors were detected in the external cortex of the inferior colliculus as early as P4. Our results show that auditory neurons, characterized by a high temporal precision in neuronal activity, display Ca2+-permeable GluRs. Because Ca2+ permeability appears at about the onset of hearing and is highest during the following 2 weeks, Ca2+ influx through GluRs is likely to be implicated in remodelling processes occurring during this ontogenetic period.  相似文献   

9.
Developmental dyslexia is generally believed to result from impaired linguistic processing rather than from deficits in low-level sensory function. Challenging this view, we studied the perception of non-verbal acoustic stimuli and low-level auditory evoked potentials in dyslexic adults. Compared with matched controls, dyslexics were selectively impaired in tasks (frequency discrimination and binaural unmasking) which rely on decoding neural discharges phase-locked to the fine structure of the stimulus. Furthermore, this ability to use phase-locking was related to reading ability. In addition, the evoked potential reflecting phase-locked discharges was significantly smaller in dyslexics. These results demonstrate a low-level auditory impairment in dyslexia traceable to the brainstem nuclei.  相似文献   

10.
Neural activity plays an important role in the development and maintenance of sensory pathways. However, while there is considerable experience using cochlear implants in both congenitally deaf adults and children, little is known of the effects of a hearing loss on the development of the auditory cortex. In the present study, cortical evoked potentials, field potentials, and multi- and single-unit activity evoked by electrical stimulation of the auditory nerve were used to study the functional organisation of the auditory cortex in the adult congenitally deaf white cat. The absence of click-evoked auditory brainstem responses during the first weeks of life demonstrated that these animals had no auditory experience. Under barbiturate anaesthesia, cortical potentials could be recorded from the contralateral auditory cortex in response to bipolar electrical stimulation of the cochlea in spite of total auditory deprivation. Threshold, morphology and latency of the evoked potentials varied with the location of the recording electrode, with response latency varying from 10 to 20 ms. There was evidence of threshold shifts with site of the cochlear stimulation in accordance with the known cochleotopic organisation of AI. Thresholds also varied with the configuration of the stimulating electrodes in accordance with changes previously observed in normal hearing animals. Single-unit recordings exhibited properties similar to the evoked potentials. Increasing stimulus intensity resulted in an increase in spike rate and a decrease in latency to a minimum of approximately 8 ms, consistent with latencies recorded in AI of previously normal animals (Raggio and Schreiner, 1994). Single-unit thresholds also varied with the configuration of the stimulating electrodes. Strongly driven responses were followed by a suppression of spontaneous activity. Even at saturation intensities the degree of synchronisation was less than observed when recording from auditory brainstem nuclei. Taken together, in these auditory deprived animals basic response properties of the auditory cortex of the congenitally deaf white cat appear similar to those reported in normal hearing animals in response to electrical stimulation of the auditory nerve. In addition, it seems that the auditory cortex retains at least some rudimentary level of cochleotopic organisation.  相似文献   

11.
The apparent diffusion coefficient (ADC) of choline-containing compounds (Cho), creatine and phosphocreatine (Cre), N-acetyl-aspartate (NAA), lactate, and water was measured in normal rat brain, and in the ischemic and contralateral region of rat brain approximately 3 and 24 h after induction of focal cerebral ischemia. After 3 h of ischemia, the ADC of Cre and NAA in the ischemic region had significantly decreased by 29% and 19%, respectively (P < 0.05). Lactate ADC was also obtained in the ischemic region. After 24 h of focal ischemia, no ADC values could be measured for NAA, Cre and Cho in the ischemic region because their concentrations had become too low. The ADCs of lactate and water in the ischemic volume were virtually identical at 3 and 24 h after occlusion. The experiments suggest that the ADC decrease of water after induction of ischemia is partly caused by changes in the diffusion characteristics of the intracellular compartment.  相似文献   

12.
Hearts preconditioned by brief ischemia are characterized by a reduced rate of cellular purine metabolite production during subsequent prolonged ischemia; the purpose of this study was to determine if transient exogenous adenosine pretreatment can mimic this phenomenon. The accumulation of interstitial fluid (ISF) purine metabolites during prolonged ischemia in untreated anesthetized dogs (n = 7) was compared to that in a group pretreated with brief ischemia (ischemic preconditioned group; n = 9), a group pretreated with 1.5 micromoles/min intracoronary adenosine (n = 7), and a group pretreated with 100 micromoles/min intracoronary adenosine (n = 7). Ischemic preconditioning was achieved by a 5 min period of left anterior descending coronary artery (LAD) occlusion followed by 10 min of reperfusion. The adenosine-treated groups were subjected to 10 min of intracoronary adenosine followed by 10 min of recovery. All animals were exposed to 60 min LAD occlusion followed by 60 min reperfusion. The changes in ISF adenosine and adenosine metabolites were assessed by cardiac microdialysis, using dialysate concentrations as indices of ISF levels. Ischemic preconditioning decreased the rate of dialysate adenosine and total purine accumulation during the prolonged ischemia. Although the two doses of exogenous adenosine bracketed the increase in ISF adenosine seen with ischemic preconditioning, neither adenosine dose was able to attenuate the rate of purine metabolite accumulation during prolonged ischemia. We conclude that exogenous adenosine pretreatment is unable to mimic the reduced ischemia-induced purine efflux that is characteristic of myocytes pretreated with brief ischemia.  相似文献   

13.
By using two microelectrode voltage clamp technique, the effects of "ischemia" and lysophosphatidylcholine (LPC), a main toxic metabolite in acute ischemic myocardium, on pacemaker current I(f) were examined in sheep cardiac Purkinje fibers. After perfusion with ischemia-like solution for 15, 30 and 60 min, the amplitude of I(f) current was decreased at all membrane potential levels between -60 mV (-) -120 mV (n = 5, P < 0.05), both the activation time and half activation time reaching a steady state value were prolongated (n = 5, P < 0.05), with a result of shifting activation curve of I(f) to a more hyperpolarizing level. In normal Tyrode solution, the amplitudes of I(f) at all measured potential levels were decreased significantly by LPC 2 x 10(-5) mol/L (n = 10, P < 0.05); the steady-state activation curve of I(f) was shifted to a more hyperpolarizing level but the activation time and half activation time to a steady-state value were not changed. When 2 x 10(-5) mol/L LPC was added to the solution after 30 min "ischemia", the amplitude of I(f) decreased significantly at all measured membrane potentials and further more for another 15 min (n = 10, P < 0.05). This suggests that ischemic metabolite LPC may have an inhibitory effect on the normal pacemaker activity of ventricle. Ischemic-like condition could aggravate the suppression of LPC without inducing abnormal strengthening of normal automatic rhythmic activity that might lead to ventricular tachyarrhythmia.  相似文献   

14.
The goal of the present study was to determine the neuroprotective efficacy of ischemic preconditioning using behavioral, electrophysiological and histological endpoints at various time points up to 90 days postischemia. Gerbils were exposed to a brief, non-injurious episode of forebrain ischemia (1.5 min) on each of 2 consecutive days. Three days following this preconditioning procedure, the animals received a 5 min occlusion. Other animals underwent sham surgery or a 5 min occlusion without preconditioning. Ischemic preconditioning appeared to provide striking histological protection at both rostral (approximately 80% and approximately 67% of sham) and posterior levels of hippocampus (approximately 94% and approximately 78% of sham) at 3 and 10 days survival, respectively. However, in spite of the near normal number of CA1 neurons, animals displayed marked impairments in an open field test of habituation as well as reduced dendritic field potentials in the CA1 area. Additionally, in ischemic animals the basal and apical dendritic regions of CA1 were nearly devoid of the cytoskeletal protein microtubule associated protein 2 (MAP2). Staining levels of MAP2 in preconditioned and sham animals were similar. With increasing survival time, open field behavior as well as CA1 field potential amplitude recovered. Nonetheless, CA1 cell death in ischemic preconditioned animals continued over the 90-day survival period (P<0.05, vs. sham levels). Ischemic preconditioning provides a significant degree of neuroprotection characterized by a complex interplay of protracted cell death and neuroplasticity (recovery of function). These competing processes are best elucidated using a combination of functional and histological endpoints as well as multiple and extended survival times (i.e., greater than 7-10 days).  相似文献   

15.
Organ perfusion with bloodless solutions is an established clinical method for protecting the heart against ischemic damage. In our study, we evaluated the effects of intraischemic bloodless brain perfusion on postischemic ultrastructural neuronal changes in a model of severe incomplete forebrain ischemia produced by hemorrhagic hypotension combined with temporary carotid occlusion in the rat. Four groups of rats were compared. During an ischemic insult of 30 min, the brains of two groups were perfused via both external carotids with either a normosmolar normothermic magnesium-enriched perfusate (MgSO4, 30 mM; NaCl, 37 mM; mannitol, 180 mM; n = 10) or a normothermic normal saline solution (n = 9) at a rate of 6 ml/h. Two other groups (ischemia without perfusion, n = 8; no ischemia and no perfusion, n = 7) served as controls. After 30 min of ischemia, withdrawn blood for hemorrhagic hypotension was reinfused, the carotid arteries reopened, and the brains reperfused for 2 h. After perfusion-fixation, qualitative and quantitative evaluation of postischemic cell changes of hippocampal CA1 neurons was performed by electron microscopy. Brain perfusion with the magnesium-containing solution significantly protected neurons against ischemic cell changes and provided an ultrastructural pattern similar to that seen in the nonischemic control group. In contrast, brain perfusion with normal saline solution did not result in neuronal protection. We conclude that intraischemic intracarotid brain perfusion with magnesium-enriched perfusate protects hippocampal neurons significantly against ischemic cell changes in the early reperfusion period after transient severe forebrain ischemia.  相似文献   

16.
The present study was conducted to demonstrate immunohistochemically, the sites of c-fos protein expression in the brains of mice subjected to acute and chronic social defeat stress. To induce social stress, mice were placed in situations of species-specific intermale aggression either only once or five times at 24 h intervals. Two hours after the single or fifth defeat stress, many c-fos immunoreactive neurons were observed in a variety of brain regions including the limbic system and sensory relay nuclei. The c-fos immunoreactive neurons in the brains of acute defeat mice decreased in number with time and the c-fos staining pattern of acute defeat mice became indistinguishable from that of normal control mice by 24 h after the single defeat stress. In contrast, chronic defeat stress induced persistent c-fos expression in the forebrain and brainstem even 24 h after the fifth defeat stress. In the forebrain of chronic defeat mice, the olfactory bulb, cingulate cortex, hippocampus, entire hypothalamus, septal nuclei and the amygdaloid complex, except for the central nucleus, were labeled intensely with c-fos antiserum. In the lower brainstem, nerve cells with c-fos immunoreactivity were seen mainly in ascending and descending sensory relay nuclei relevant to auditory and vestibular transmission, epicritic sensation (gracile and external cuneate nuclei), pain inhibition (central gray and raphe nuclei), and viscerosensory transmission (solitary tract nucleus). The differences in c-fos expression among the normal control, acute and chronic defeat mice were evaluated by an enumeration of the immunopositive neurons within each brain nucleus examined, and they were confirmed subsequently by statistical analysis. There was little c-fos expression in the nucleus putamen, lateral, ventral and posterior thalamic nuclei, pretectal nuclei, medial geniculate nucleus, red nucleus, substantia nigra, cerebellum, spinal cord, or cranial nerve nuclei. These findings suggest that chronic but not acute defeat stress causes persistent c-fos expression in more widespread brain regions than do any other stresses so far investigated. The present study may shed light on the central mechanisms by which behavioral abnormalities and/or chronic sociopsychological stress leads to the occurrence of abnormal behavior and/or psychosomatic disorders in experimental animals and humans.  相似文献   

17.
The susceptibility of axons to blunt head injury is well established. However, axonal injury following cerebral ischemia has attracted less attention than damage in gray matter. We have employed immunocytochemical methods to assess the vulnerability of axons to cerebral ischemia in vivo. Immunocytochemistry was performed using antibodies to a synaptosomal-associated protein of 25 kDa (SNAP25), which is transported by fast anterograde transport; the 68-kDa neurofilament subunit (NF68kD); and microtubule-associated protein 5 (MAP5) on sections from rats subjected to 30 min and 1, 2, and 4 h of ischemia induced by permanent middle cerebral artery (MCA) occlusion. After 4 h of occlusion, there was increased SNAP25 immunoreactivity, which was bulbous in appearance, reminiscent of the axonal swellings that occur following blunt head injury. Increased SNAP25 immunoreactivity was present in circumscribed zones in the subcortical white matter and in the axonal tracts at the border of infarction, a pattern similar to that previously described for amyloid precursor protein. Although less marked, similar changes in immunoreactivity in axons were evident following 2 h of ischemia. MAP5 and NF68kD had striking changes in immunoreactivity in axonal tracts permeating the caudate nucleus within the MCA territory at 4 h. The appearance was roughened and disorganized compared with the smooth regular staining in axons within the nonischemic areas. Profiles reminiscent of axonal bulbs were evident in MAP5-stained sections. The changes seen with NF68kD and MAP5 were also evident at 2 h but were more subtle at 1 h. There were no changes in axonal immunoreactivity with SNAP25 or NF68kD at 30 min after MCA occlusion. Altered immunoreactivity following ischemia using SNAP25, MAP5, and NF68kD provides further evidence for the progressive breakdown of the axonal cytoskeleton following an ischemic insult. NF68kD and MAP5 appear to be sensitive markers of the structural disruption of the cytoskeleton, which precedes the subsequent accumulation of SNAP25 within the damaged axons. Axonal cytoskeletal breakdown and disruption of fast axonal transport, which are well-recognized features of traumatic brain injury, are also sequalae of an ischemic insult.  相似文献   

18.
Slow potential recording was used for long-term monitoring of the penumbra zone surrounding an ischemic region produced by middle cerebral artery (MCA) occlusion in adult hooded rats (n = 32). Four capillary electrodes (El-E4) were chronically implanted at 2-mm intervals from AP -3, L 2 (El) to AP 0, L 5 (E4). Spontaneous or evoked slow potential waves of spreading depression (SD) were recorded during and 4 h after a 1-h MCA occlusion and at 2- to 3-day intervals afterward for 3 weeks. Duration of the initial focal ischemic depolarization was maximal at E4 and decreased with distance from the focus. SD waves in the penumbra zone were high at El and E2, low and prolonged at E3, and almost absent at E4. Amplitude of elicited SD waves was further reduced 3 days later and slowly increased in the following week. Cortical areas displaying marked reduction of SD waves in the first days after MCA occlusion either remained low or showed substantial (60%) recovery, the probability of which decreased with the duration of the initial focal ischemic depolarization and increased with the distance from the focus. It is concluded that the outcome of ischemia monitored by long-term SD recovery in the perifocal region can be partly predicted from the acute signs of MCA occlusion.  相似文献   

19.
This study was undertaken to determine the effects of estrogen and testosterone on cerebral ischemic lesion size induced by middle cerebral artery (MCA) occlusion in male rats. Rats were gonadectomized and treated with testosterone, estrogen, or testosterone plus estrogen filled Silastic pellets. The animals were divided into 6 groups: intact, intact + estrogen (E2), castrate, castrate + testosterone (T), castrate + E2, and castrate + T + E2. One week after treatment, cerebral ischemia was induced by MCA occlusion for 40 min, followed by reperfusion. After 24 h, rats were sacrificed and slices were then stained to assess lesion size. The presence of testosterone increased and the removal of testosterone decreased lesion size. A strong positive correlation (r2 = 0.922) between plasma testosterone concentrations and ischemic lesion size was observed. Estradiol treatment reduced ischemic area. In summary, the present study provides evidence that testosterone exacerbates and estrogens ameliorate ischemic brain damage in an animal model of cerebral ischemia.  相似文献   

20.
Activation of cardiac muscarinic receptors by vagal stimulation decreases cardiac work, which may have a protective effect against ischemic injury. To determine whether cardiac muscarinic receptors contribute to the mechanisms of preconditioning effects, we examined the effect of carbachol on ischemia/reperfusion damage and the effect of vagotomy on cardioprotection induced by ischemic preconditioning. Rats were subjected to 30 min of left coronary artery occlusion followed by 30-min reperfusion in situ. Pre-conditioning was induced by three cycles of 2-min coronary artery occlusion and, subsequently by 5 min of reperfusion. The incidence of ischemic arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), and the development of myocardial infarction were markedly reduced by the preconditioning. Carbachol infusion (4 micrograms/kg per min) delayed the occurrence of VT and VF during ischemia and reduced the infarct size. Compared with non-ischemic left ventricle, the cyclic guanosine monophosphate (GMP) content in the ischemic region of the left ventricle was decreased by ischemia/reperfusion, whereas the cyclic adenosine monophosphate (AMP) content of this region was increased. These changes were reversed by preconditioning. Similar changes in cyclic GMP and AMP content in the ischemic region were seen in rats undergoing carbachol treatment. These results suggest the possible contribution of muscarinic receptor stimulation to preconditioning. Vagotomy prior to preconditioning diminished the antiarrhythmic effects, whereas it did not block the anti-infarct effect afforded by pre-conditioning. Vagotomy abolished the preconditioning effect on the tissue cyclic GMP, but it did not attenuate the decrease in tissue cyclic AMP. The results suggest that muscarinic stimulation exerts preconditioning-mimetic protective effects in ischemic/reperfused hearts, but that a contribution of reflective vagal activity to the mechanism for preconditioning is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号