首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以常规和纳米团聚体Al2O3-13%TiO2(质量分数)陶瓷粉末为原料,采用等离子喷涂和等离子喷涂-激光重熔复合工艺在TiAl合金表面制备了常规和纳米结构陶瓷涂层,分析了粉末结构及制备工艺对涂层抗冲蚀性能的影响,并探讨了各种涂层的冲蚀破坏机理.结果表明:相对于等离子喷涂试样,激光重熔涂层有较好的抗冲蚀性能.在同等条件下,纳米结构涂层的抗冲蚀性能优于常规涂层.常规陶瓷涂层表现为典型的脆性冲蚀特性,纳米结构陶瓷涂层呈明显的脆性冲蚀特性,同时有一定程度的塑性冲蚀特征.等离子喷涂层的冲蚀磨损以片层状脱落为主,同时有一定程度的脆性陶瓷颗粒破碎;而激光重熔试样以近表面的裂纹萌生和扩展,最终导致重熔层晶粒破碎、剥离为主.  相似文献   

2.
研究了钛合金表面等离子喷涂纳米结构的A12O3+l3wt.%TiO2复合陶瓷涂层激光重熔的微观结构形貌、物相、显微"硬度及结合强度.结果表明涂层在激光重熔后.消除了等离子喷涂后的片层结构组织.在涂层中仍存在部分未熔的纳米结构颗粒,分散了涂层内的应力.原等离子喷涂层中的γ-Al2 O3亚稳态相消失,全部转变为稳态相α-Al2 O3,TiO2则由板钛矿相完全转变为热力学稳定的金红石相,重熔后的喷涂层致密性、显微硬度和结合强度均得到了明显提高.  相似文献   

3.
何文  赵运才  张佳茹 《激光与红外》2017,47(12):1486-1491
为了进一步探讨激光重熔等离子喷涂金属陶瓷涂层的组织与性能。本文通过等离子喷涂设备在45钢表面上制备了Ni/WC金属陶瓷涂层,再进行激光重熔处理,然后利用SEM、XRD、Photoshop软件及显微硬度测试仪等分析测试手段研究了该涂层在激光重熔前后的组织性能变化。结果表明:激光重熔前涂层为典型的层状结构,基体与涂层的结合面为机械结合,涂层内有大量未熔WC颗粒,且XRD检测其高温作用使得喷涂颗粒发生分解,分解出的C元素与其他元素发生反应生成新的化合物,丰富了涂层的硬质相;激光重熔后涂层中颗粒细化,分布均匀且能消除涂层中大部分孔隙和WC团聚。WC再次发生分解,生成新的硬质相,与周围的Ni形成“软基相+硬质点”的组合分布,基体与涂层的结合方式由机械结合转变为冶金结合。孔隙率由7.02%降到了3.08%,显微硬度也相应提高,且涂层显微硬度比基体高了255HV。  相似文献   

4.
激光重熔等离子喷涂Al2O3-13%TiO2陶瓷涂层热震性能   总被引:1,自引:0,他引:1  
为了提高等离子喷涂Al2O3-13%TiO2(质量分数)陶瓷涂层的抗热震性能,采用激光重熔工艺对涂层进行处理,研究了激光重熔对等离子喷涂层热震性能的影响,并探讨了涂层的热震失效机理.结果表明:相对于等离子喷涂试样,激光重熔涂层有较好的抗热震性能.等离子喷涂陶瓷涂层的热震失效形式基本为边角剥落,而激光重熔陶瓷涂层热震失效形式既有边角剥落又有相当数量的中间区域局部剥落.激光重熔对涂层热震性能的影响主要表现为降低涂层的初始抗破坏能力、减缓涂层的裂纹扩展速率以及改变涂层的破坏模式.  相似文献   

5.
激光重熔工艺参数对热障涂层热震性能的影响   总被引:5,自引:1,他引:4  
在GH536高温合金基材上等离子喷涂氧化钇部分稳定氧化锆(8YSZ)热障涂层后,采用连续CO2激光进行表面陶瓷层激光重熔,得到了表面形貌、组织结构符合质量要求的涂层。热震试验结果表明,在本试验的失效判据下,等离子喷涂及激光重熔试样的失效形式和机理不同,等离子喷涂试样为热震应力失效,激光重熔试样以热震应力和TGO应力共同作用形式失效。激光能量密度为4.0J/mm2时,激光重熔试样具有略高于等离子喷涂试样的热震寿命,当激光能量密度较高时,激光能量分布不均导致的组织及结构的不均匀,柱状晶粗化是能量密度较高的表征,扩展到喷涂态陶瓷层中的裂纹是激光重熔试样热震寿命降低的主要原因。  相似文献   

6.
为了进一步提高TiAl合金的耐热腐蚀性能,分别采用等离子喷涂和等离子喷涂-激光重熔复合工艺在TiAl合金表面制备了纳米A12O3-13%TiO2(质量分数)陶瓷涂层.研究了两种涂层在850'C下75%Na2SO4+25%NaCl(质量分数)熔融盐中的热腐蚀行为,用扫描电子显微镜(SEM)和x射线衍射仪(XRD)对腐蚀后试样的微观组织以及物相进行了分析,并讨论了激光重熔处理对涂层耐热腐蚀性能的影响.结果表明,等离子喷涂陶瓷涂层的腐蚀情况较为严重,经过激光重熔后可以有效提高其耐热腐蚀性能.激光重熔试样具有较高抗热腐蚀性能的原因是:一方面激光重熔消除了喷涂层的层状结构和大部分孔隙,形成了均匀致密的重熔层,减少了热腐蚀过程中的腐蚀扩散通道;另一方面归因于激光重熔使亚稳相γ-Al2O3转变为稳定相α-Al2O3.  相似文献   

7.
采用等离子喷涂工艺在Co基合金表面制备CoCrAlYTa-Al_2O_3-ZrB_2复合涂层,并采用激光重熔工艺对涂层进行处理。通过扫描电镜(SEM)、和X射线衍射仪(XRD)对重熔前后试样进行检测,分析涂层的微观结构及物相组成,同时对涂层进行高温氧化实验,比较重熔前后试样的性能。结果表明,激光重熔消除了等离子喷涂层的片层状结构、孔隙等缺陷,涂层致密性有很大提高;激光重熔层截面显微硬度从平均899.47 HV提高到929.484 HV;激光重熔层氧化增重速率约为等离子喷涂层的1/6,且氧化膜均匀致密,有效阻止氧化的进一步进行,从而大大提高涂层的抗氧化性能。  相似文献   

8.
高磊  李慧芸 《红外与激光工程》2020,49(1):0105005-0105005(8)
该研究通过大气等离子喷涂法制备了粘接层为NiCoCrAlYTa合金、陶瓷层为YSZ和La2Ce2O7(LC)的双陶瓷层热障涂层(DCL-TBCs),并提出了一种采用脉冲Nd:YAG激光的新型桩钉结构激光改性方法。结果表明,激光改性后,双陶瓷层热障涂层的表面粗糙度较喷涂前有明显提高;在激光改性的桩钉结构单元中可以发现陶瓷层的完全再结晶,以及致密的柱状微结构;由于激光改性构建的桩钉结构使得整个LC层和部分YSZ层产生了再熔化与再溶解,极大地提高了界面结合性能和结合强度,因此激光改性后的双陶瓷层热障涂层比常规的双陶瓷层热障涂层具有更好的抗脱粘性能。  相似文献   

9.
激光重熔对火焰喷涂法制备Ni-WC复合涂层耐磨性能的影响   总被引:11,自引:2,他引:9  
利用CO2激光对火焰喷涂制备的Ni-WC复合涂层进行了重熔实验,通过扫描电镜(SEM)观察了其重熔后表面形貌,测试了含有不同WC体积分数样品重熔前后的涂层显微硬度,并分析了WC含量对涂层组织及耐磨性的影响。实验结果表明,火焰喷涂制备的涂层气孔随着WC颗粒含量增大而增多,经激光重熔后气孔明显减少;激光重熔后的涂层显微硬度比火焰喷涂的涂层显微硬度提高约20%,WC体积分数为6%时涂层显微硬度达到最大值;激光重熔处理后的涂层耐磨性随着WC含量的增加而增大,WC体积分数为6%时,其耐磨性达到最佳值。  相似文献   

10.
矩形光束激光重熔等离子喷涂热障涂层热震试验研究   总被引:4,自引:0,他引:4  
在GH536高温合金基材上等离子喷涂NiCrA1Y/8wt.%Y2O3-ZrO2热障涂层后,采用积分化矩形光斑进行激光重熔。组织结构分析及热震试验结果表明:等离子喷涂与激光重熔试样的失效形式和机理不同,等离子喷涂试样以热震应力失效和热震应力复合TGO应力辅助作用两种形式失效。激光重熔试样以热震应力形式失效为主。能量密度较小的激光重熔试样具有高于等离子喷涂试样的热震寿命。网状裂纹及柱状晶粗化和扩展到喷涂态陶瓷层中的裂纹是激光重熔试样热震寿命降低的主要原因。  相似文献   

11.
激光熔覆纳米Al2O3复合陶瓷涂层的组织结构   总被引:6,自引:0,他引:6  
研究了 4 5 #钢表面激光熔覆纳米Al2 O3 复合陶瓷涂层的微观组织结构、显微硬度和磨损特性。结果表明 ,激光熔覆层由α-Al2 O3 和TiO2 以及Al2 O3 纳米颗粒组成 ,在激光的作用下 ,消除了原来等离子喷涂层的片层状组织 ;纳米颗粒仍然保持纳米尺度 ,填充在涂层的大颗粒之间 ,起着桥连的作用 ;同时涂层气孔率的降低使涂层致密化程度得以提高 ,纳米Al2 O3涂层的显微硬度较高 ,且其耐磨性能明显优于等离子Al2 O3 +1 3%TiO2 喷涂层  相似文献   

12.
杨宁  李立凯  晁明举 《激光技术》2012,36(5):627-631
为了提高45#钢表面强度和耐磨性,采用激光熔覆技术制备原位生长VC-WxC颗粒增强镍基涂层。使用金相显微镜、扫描电镜、电子能谱和X射线衍射仪对熔覆层显微组织和物相进行了分析,并对熔覆层显微硬度及摩擦性能进行了测试。在适当工艺条件下,熔覆层成形良好,涂层与基体呈现良好的冶金结合;熔覆层底部组织为定向生长的 γ(NiFe)树枝晶,熔覆层中上部组织为VC,W2C,WC和Cr3C2相,均匀分布于γ(NiFe)树枝晶基体中;熔覆层具有极高的硬度(平均HV0.31400),耐磨性是纯Ni60涂层的6倍。结果表明,其硬度和耐磨性的提高归因于涂层中大量的VC,W2C,WC和Cr3C2相的生成,并均匀分布于涂层的基体中。  相似文献   

13.
运用激光熔覆技术在45#钢表面制备了WCp增强Ni-Cr-B-Si-C复合涂层。含量为30vol-%WC典型涂层的XRD,SEM和TEM分析表明,WCp在熔覆的熔化阶段发生部分溶解和分解。激光熔体凝固时形成的微观组织由Ni+Ni3B共晶基体上分布的杆(或薄片)状α-W2C,块状β-W2C和四方形η1碳化物M6C相组成。这类碳化物主要含W,并含大量Cr。销-环式干滑动磨损试验表明,当WCp含量约为30vol-%时,磨损抗力最大  相似文献   

14.
刘洪喜  冷凝  张晓伟  蒋业华 《红外与激光工程》2016,45(1):120001-0120001(6)
通过6 kW 横流CO2激光器在40Cr钢表面激光熔覆了不同成分配比的WC/Co50复合涂层。运用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等表征手段分析了涂层结合区形貌、显微组织和物相组成,测试了复合涂层的显微硬度和磨损性能。结果表明,外加的WC颗粒在高能激光束作用下大部分发生溶解,涂层主要由碳化物WC、W2C、(Cr,Fe)7C3和W6C及Fe-Cr固溶体等物相组成。涂层中组织结构比较复杂,出现了树枝状初晶、包状过共晶,枝晶间共晶和硬质相颗粒。WC/Co50 熔覆涂层的最大显微硬度位于涂层次表面,其最大平均显微硬度为基材的1.93倍,且随着深度的增加逐渐降低。相同磨损条件下,复合涂层的磨损失重仅为基材的13.3%。  相似文献   

15.
李镭昌  魏昕 《激光技术》2023,47(1):52-58
为了研究复合涂层中碳化钨(WC)组织演变对裂纹产生的影响机理, 采用单层激光熔覆、过渡层梯度熔覆与双层熔覆制备3种Ni50A/WC复合涂层对比的方法, 分析涂层的形貌与组织、裂纹产生特点以及原因, 探究WC的组织演变对裂纹产生的影响。结果表明, 不同熔覆方法的WC组织演变对裂纹产生的影响主要由残余WC颗粒内部开裂形成裂纹源、硬质相元素引起成分偏析等作用组成; 双层熔覆、梯度熔覆涂层与单层熔覆涂层相比, 由于粉末吸收了更多的能量, 残余WC颗粒含量降低了32.7%与37.9%, 减少了涂层内部裂纹源; 共晶化合物的W元素质量分数也从单层熔覆涂层的0.534分别下降到双层熔覆涂层的0.417与梯度熔覆涂层的0.386, 降低了硬质相元素集中程度, 减少了涂层成分偏析, 降低了涂层开裂敏感性。该研究对改善激光熔覆复合涂层的开裂问题、提高复合涂层的成品率有一定的指导意义。  相似文献   

16.
Cr3C2对激光熔覆钴基合金涂层组织与性能的影响   总被引:11,自引:2,他引:11  
何宜柱  斯松华  徐锟  袁晓敏 《中国激光》2004,31(9):143-1148
采用5kW CO2连续激光在低碳钢表面激光熔覆了钴基合金涂层(Co60)及添加25%Cr3C2(质量分数)的钴基合金复合涂层(Cr3C2/Co),对比研究了Cr3C2对熔覆涂层的组织、显微硬度及耐腐蚀磨损性能的影响。结果表明,在本试验条件下可得到熔覆质量良好的Co60及Cr3C2/Co涂层。Co60涂层组织主要由大量初生枝晶γ固溶体及其间的共晶组织γ与(Cr,Fe)7C3组成。Cr3C2/Co涂层组织主要由未熔Cr3C2,大量杆状和块状的富Cr碳化物及其间的非常细小的枝晶及其共晶体组成,主要组成相为γ-Co,Cr7C3,Cr23C6和未熔Cr3C2颗粒。添加的Cr3C2改变了Co60涂层的凝固特征,使Co60涂层的亚共晶结晶方式转变为Cr3C2/Co涂层的过共晶结晶方式。未熔Cr3C2粒子起到了非自发形核作用,在其周围形成了许多富Cr碳化物,并细化了涂层枝晶组织。Cr3C2/Co涂层的显微硬度以及在不同腐蚀介质中的耐磨性比Co60涂层都有明显提高。  相似文献   

17.
工艺参数对激光重熔等离子喷涂Ni基WC复合涂层影响   总被引:1,自引:0,他引:1  
采用激光重熔工艺对等离子喷涂预置Ni基WC复合涂层进行处理,研究了激光工艺参数对涂层微观组织和性能的影响。用扫描电镜(SEM)、显微硬度计和球-盘式摩擦磨损机分析了涂层微观结构、显微硬度和高温摩擦磨损特性。结果表明,激光重熔消除了等离子喷涂层的片层状结构、孔隙等缺陷,涂层致密性提高;随着激光功率的增加,WC颗粒烧损和溶解增多,同时涂层稀释率变大;激光重熔处理后涂层的显微硬度和磨损性能显著高于原等离子喷涂层,但激光功率对其有较大的影响,工艺参数的合理选择有利于WC颗粒适当熔化,从而在涂层中保留较高比例的硬质相,同时使WC颗粒与Ni基体的结合较强,达到较高的显微硬度和耐磨性能。  相似文献   

18.
激光熔覆Ni/WC复合涂层的组织和性能   总被引:8,自引:2,他引:8  
采用激光熔覆方法在A3钢基体上制备Ni/WC复合涂层 ,研究了不同激光功率下复合涂层中WC颗粒的形貌与分布及其对涂层耐磨性能的影响。结果表明 ,在Ni/WC复合涂层中 ,合理的激光功率使WC颗粒部分熔化 ,并在颗粒周围重新凝固并析出针状碳化物 ,这既有利于提高涂层的硬度又能使未熔化的WC颗粒与涂层基体合金牢固结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号