共查询到10条相似文献,搜索用时 15 毫秒
1.
杨洪涛 《组合机床与自动化加工技术》2020,(1):79-82,88
为了准确诊断出轴承故障,提出了样本熵改进小波包阈值去噪算法的轴承故障诊断方法。分析了样本熵与噪声大小、数据长度、信号固有特征的关系,得出了样本熵可以很好表征噪声大小、与数据长度、信号固有特征相关性极小的结论。使用样本熵从三个方面改进了小波包阈值去噪算法:提出了自适应阈值函数,使阈值函数随噪声分布情况进行自适应调整;以噪声信号样本熵值最大为依据,提出了最优阈值估计方法,使阈值随噪声大小自适应调整;以相邻分解层数的样本熵均值差值为依据,提出了分解层数确定方法。将样本熵改进小波包阈值去噪算法应用于轴承故障信号去噪中,去噪信号功率谱中轴承转动频率及倍频、外圈故障特征频率及倍频、两者的调制频率显露明显,能够明确判处出轴承为外圈故障,体现了极好的去噪效果。 相似文献
2.
3.
为识别数控机床运行过程中滚动轴承的运行状态,提高滚动轴承的故障状态诊断正确率,提出了一种基于小波包分解的改进遗传算法优化BP神经网络的滚动轴承故障识别方法。以滚动轴承的4种故障状态为研究对象,通过小波包分解振动信号,得到敏感特征向量;针对BP神经网络的缺点,运用改进遗传算法优化BP神经网络的阈值和权值,实现最优训练,建立更精确的滚动轴承IGA-BP状态预测模型。结果表明:IGA-BP预测模型收敛速度更快,预测准确率更高,证明了所提方法的有效性。 相似文献
4.
微型电机振动信号信噪比低,环境噪声复杂,对噪声信号进行有效去除是对其进行质量检测的关键步骤。针对传统小波降噪阈值函数连续性差、降噪效果不理想等问题,提出一种基于样本熵的改进小波阈值函数,能够根据信号混乱程度自动对阈值函数进行调节。仿真结果表明:在低信噪比环境下,基于样本熵的改进阈值函数降噪效果明显优于传统阈值函数和普通改进阈值函数,信号信噪比得到显著提升。对微型电机异音信号进行降噪处理和特征提取,结合SVM分类器进行训练测试,试验结果表明:改进的小波降噪算法能够有效去除电机信号环境噪声,提取有效的信号特征,对出厂电机性能优劣进行准确判断。该方法将为微型电机厂家大规模质量检测提供理论依据和支持。 相似文献
5.
6.
根据液压泵发生故障所表现出来的特征,采用小波包能量值提取的办法作为故障类型识别的特征量,采用BP神经网络对输入的特征量进行识别。实验结果表明:采用小波神经网络对液压泵故障类型的识别可以取得满意的效果。 相似文献
7.
应用超声波探伤仪系统对合成大颗粒金刚石缺陷进行检测,针对缺陷信号特点提出利用小波包分析提取缺陷特征值,应用小波神经网络进行模式识别的方法,实现了从检测到的超声信号中提取出反映缺陷性质的相关信息,并通过这些信息对其进行分析,建立了网络模型以实现缺陷定性识别。实验结果表明,小波包分析能够挖掘利用缺陷回波信号时域和频域的信息,通过多层次划分频带,使在多分辨分析过程中未进行划分的高频区间再次分解,还可依据小被分析信号特征自适应挑选相对应的频带,达到和信号频谱相互配合,进而达到使时-频分辨率显著提高的效果,可见小波神经网络的良好局部放大特性和多分辨率学习特性,可使合成金刚石缺陷的定性分类获得较高的准确率。 相似文献
8.
针对齿轮箱轴承故障识别率低、故障信号不平稳的问题,提出层次熵与小波包能量多源数据融合轴承故障诊断方法。采用小波包对轴承正常、内圈、外圈、滚动体故障等4种振动信号进行三层小波包分解并重构,计算各频段样本熵(即层次熵)和小波包能量作为故障特征向量集;应用归一化方法对2种特征向量处理后分别建立BP神经网络模型实现轴承不同故障模式的诊断;最后应用D-S证据理论,通过小波包能量和层次熵以及两者融合信息的故障诊断结果比较,表明基于神经网络和D-S证据理论相结合方法用于复杂机械的故障诊断是可行和有效的。 相似文献
9.