首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究航空润滑油的热氧化安定性,模拟聚α-烯烃(PAO)和酯类油(DE)两种合成航空润滑基础油在发动机内的高温工况,借助傅里叶红外光谱(FTIR)、气相色谱/质谱(GC/MS)联用等仪器对反应油样的黏度和结构组成进行测试与分析.结果表明,PAO具有较差的热氧化安定性能,在200℃时就发生分解,而DE的分解温度可达到300℃.在两种航空润滑基础油的高温衰变中,均有不同的产物生成.PAO衰变产物主要包括烷烃和烯烃,而DE的衰变产物主要是含氧化合物.最后,根据实验结果分析了航空润滑基础油的高温衰变机理.  相似文献   

2.
为研究航空润滑油的热氧化安定性,模拟聚α-烯烃(PAO)和酯类油(DE)两种合成航空润滑基础油在发动机内的高温工况,借助傅里叶红外光谱(FTIR)、气相色谱/质谱(GC/MS)联用等仪器对反应油样的黏度和结构组成进行测试与分析。结果表明,PAO具有较差的热氧化安定性能,在200℃时就发生分解,而DE的分解温度可达到300℃。在两种航空润滑基础油的高温衰变中,均有不同的产物生成。PAO衰变产物主要包括烷烃和烯烃,而DE的衰变产物主要是含氧化合物。最后,根据实验结果分析了航空润滑基础油的高温衰变机理。  相似文献   

3.
对不同温度和反应条件下的癸二酸二-2-乙基己酯(DHS)基础油理化指标进行考察,并采用GC/MS现代分析手段测定油样结构组成,探讨酯类航空润滑油基础油的热氧化衰变规律,从分子水平揭示酯类航空润滑油基础油高温衰变后颜色、黏度和酸值变化的原因。试验结果表明:空气、氧气和抗氧剂N-苯基-α-萘胺(NPAN)对DHS黏度高温衰变影响较小,这是因为油品分子链在高温作用下既发生裂解使黏度低,也会相互聚合使黏度增大;氧气的存在会与自由基生成醇、醛和酸等含氧化合物,使油样酸值急剧增大,添加NPAN后极大地抑制了酸值升高,油样酸值的突变温度升高,表明NPAN在酯类基础油中发挥了较好的抗氧化效果。  相似文献   

4.
采用高温氧化加速模拟装置,研究聚α-烯烃基础油的高温氧化变化规律;利用FTIR和GC/MS等检测手段,分析聚α-烯烃基础油及其高温产物结构组成的变化,探讨结构变化对油品性能变化的影响,推测润滑基础油高温氧化的过程及其反应类型。结果表明:高温作用下,聚α-烯烃润滑基础油发生了严重的热氧化和热裂解反应,导致基础油颜色加深、黏度变小、酸值增大;由于聚α-烯烃含有较多的叔碳分子的特殊结构,在高温下易发生断裂,生成活泼的自由基,自由基在氧气作用下,发生氧化反应,生成小分子的醛、酮、酸、酯等物质,使得润滑油的酸值变化显著;同时聚α-烯烃分子发生断裂时,生成的小分子烷烃、烯烃等,造成聚α-烯烃润滑基础油黏度衰变。  相似文献   

5.
采用高温氧化加速模拟装置,研究聚α-烯烃基础油的高温氧化变化规律;利用FTIR和GC/MS等检测手段,分析聚α-烯烃基础油及其高温产物结构组成的变化,探讨结构变化对油品性能变化的影响,推测润滑基础油高温氧化的过程及其反应类型。结果表明:高温作用下,聚α-烯烃润滑基础油发生了严重的热氧化和热裂解反应,导致基础油颜色加深、黏度变小、酸值增大;由于聚α-烯烃含有较多的叔碳分子的特殊结构,在高温下易发生断裂,生成活泼的自由基,自由基在氧气作用下,发生氧化反应,生成小分子的醛、酮、酸、酯等物质,使得润滑油的酸值变化显著;同时聚α-烯烃分子发生断裂时,生成的小分子烷烃、烯烃等,造成聚α-烯烃润滑基础油黏度衰变。  相似文献   

6.
为制备高黏度指数合成基础油,以1-癸烯为齐聚原料、[Emim]Cl/AlCl3离子液体为催化剂合成聚a-烯烃基础油,考察[Emim]Cl/AlCl3摩尔比、催化剂用量、反应温度、反应时间和原料含水量对反应产物性能及收率的影响。结果表明,提高催化剂AlCl3:[Emim]Cl摩尔比或降低反应温度,合成润滑油的黏度增加;增加催化剂用量可提高产物黏度,但会增加异构化等副反应,降低产物黏度指数;反应原料中含水量变化对聚合度有重要影响,但黏度指数保持稳定。在AlCl3/[Emim]Cl摩尔比为2∶1,催化剂质量分数为10%,反应温度为60 ℃,反应时间4 h的条件下,合成油的100 ℃运动黏度在10.34 mm2/s以上,黏度指数高于143,适合作为柴油机多级润滑油基础油。  相似文献   

7.
为研究润滑油在边界润滑条件下的摩擦降解及其对润滑油性能的影响,采用四球试验机考察偏苯三酸三异辛醇酯(TMTO)、偏苯三酸三异壬醇酯(TMTD)以及偏苯三酸三异十三醇酯(TMTT)在边界润滑条件下的摩擦学性能。结果表明:分子结构对偏苯三酸酯在边界润滑条件下的润滑性能有较大影响,链长最长的TMTT的减摩与抗磨性能优于TMTO与TMTD。利用高压差示扫描量热仪(PDSC)及热重分析仪(TGA)研究四球试验前后3种基础油的抗氧化性能及热分解性,并测试摩擦试验前后润滑油的黏度与酸值变化。结果表明:边界润滑条件下的摩擦过程会导致偏苯三酸酯类基础油黏度升高、酸值降低、氧化安定性下降;润滑性能良好的基础油在一定程度上阻止或减缓润滑油本身氧化反应的发生;在边界润滑条件下,偏苯三酸酯一部分在机械剪切及水解作用下分解会生成小分子的化合物,另一部分在氧化作用下聚合生成大分子化合物。  相似文献   

8.
合成酯类润滑油分子结构中的酯键由于亲水性较强极易发生水解。为研究合成酯的水解过程与水解机制,选取5种常用合成酯类基础油,采用高压反应釜按SH/T 0301 1993标准进行水解试验,研究合成酯分子结构、水解时间、水解温度以及水含量等因素对合成酯水解稳定性的影响。研究表明:合成酯空间位阻越大,初始酸值越小,水解稳定性越好,其中初始酸值比分子结构的影响更大;水含量对合成酯水解性能的影响不大,水解速率主要取决于油水接触面积,而水解温度和时间对合成酯水解性能的影响较大;温度升高或时间延长,合成酯水解稳定性减弱,表现在油品酸值变化增大、运动黏度减小以及颜色加深等。  相似文献   

9.
合成酯类润滑油分子结构中的酯键由于亲水性较强极易发生水解。为研究合成酯的水解过程与水解机制,选取5种常用合成酯类基础油,采用高压反应釜按SH/T 0301-1993标准进行水解试验,研究合成酯分子结构、水解时间、水解温度以及水含量等因素对合成酯水解稳定性的影响。研究表明:合成酯空间位阻越大,初始酸值越小,水解稳定性越好,其中初始酸值比分子结构的影响更大;水含量对合成酯水解性能的影响不大,水解速率主要取决于油水接触面积,而水解温度和时间对合成酯水解性能的影响较大;温度升高或时间延长,合成酯水解稳定性减弱,表现在油品酸值变化增大、运动黏度减小以及颜色加深等。  相似文献   

10.
正中国科学院大连化学物理研究所(以下简称大连化物所)研究员田志坚团队开发的煤基费托合成蜡加氢异构生产高档润滑油基础油技术,在新疆克拉玛依白碱滩区中试装置上成功开展生产试验,以国产费托合成蜡为原料,高收率批量生产出高品质润滑油基础油产品,系列高档润滑油基础油产品有望填补我国高档润滑油市场缺口,实现我国高档润滑油产品自足自给。黏度指数和倾点通常是评价润滑油基础油产品的重要指标。黏度指数越高,产品黏度随温度变化越小,润滑功能的稳定性就越好;  相似文献   

11.
以金刚烷甲酸为主要原料,通过氯酰化、酯化两步反应合成金刚烷甲酸正辛酯,分析比较金刚烷甲酸正辛酯的理化性能和氧化稳定性。结果表明:该润滑剂性能指标为黏度指数111,倾点小于-30℃,开口闪点168℃,氧化稳定性208 min,酸值小于0.1 mgKOH/g;金刚烷甲酸正辛酯具有比金刚烷烃油更好的黏温特性,具有比商用酯类润滑油更好的低温流动性,并具有比一般基础油更好的氧化稳定性,但闪点比一般基础油低。  相似文献   

12.
以烷基萘、长链α-烯烃为主要原料烷基化合成几种烷基萘油,测定其流变学性能(运动黏度、倾点及闪点)、摩擦学性能(pB,pD值及磨斑直径)及酸值,并与市售的一种烷基萘油A的性能进行对比。结果表明,合成的烷基萘基础油的流变学性能、承载能力、抗磨性能、热稳定性能等明显优于市售的烷基萘油A,是性能较优良的合成基础油。  相似文献   

13.
热氧化和水解是造成酯类合成油衰变的最重要原因,也是影响酯类基础油的有效使用寿命的关键因素。在恒温箱中对3种酯类基础油进行连续老化试验,考察其在在无水、有水(铜片作为催化剂)以及有添加剂存在条件下的运动黏度和总酸值的变化,并结合差示扫描量热法(DSC)所测得的起始氧化温度,比较酯类油的热氧化、水解情况以及抗氧剂对酯类基础油老化过程的影响。试验结果表明:酯类基础油的热氧化稳定性与其自身分子结构有关,含有芳烃或合成的醇类结构中不含β-H的基础油会具有较好的热稳定性。酚类和胺类抗氧剂能有效地抑制不饱和多元醇酯类基础油的热氧化速度,起到较明显的抗氧化作用,并具有一定的抑制基础油水解的效果。  相似文献   

14.
为评定某型酯类航空润滑油的氧化安定性能,采用轴承模拟试验装置模拟超高温度工况(200℃以上),对该型酯类润滑油进行不同工况条件下的高温氧化试验,对氧化后的油样黏度进行了测定,使用液相色谱/质谱(LC/MS)以及气相色谱/质谱(GC/MS)对氧化后油样的结构和组成进行分析,并通过PDSC获得氧化后油样的起始氧化温度。结果表明:高温氧化后该型酯类油的黏度明显下降,远低于产品初始值,而随模拟温度的升高,其黏度先增后减,但总体变化幅度很小;在氧化过程中产生的大部分化合物分子量都高于原润滑油分子量;油样氧化产物主要为癸二酸二异辛酯基础油分子断裂后所产生的单酯、双酯类化合物。通过热分析发现,极高的氧化温度(200℃以上)下抗氧剂的消耗以及不安定化合产物的产生,会导致油样的氧化安定性能急剧下降。  相似文献   

15.
采用曲轴箱成焦性能试验仪对加氢基础油和聚ɑ烯烃(PAO)基础油、含有不同添加剂的基础油、发动机油进行试验,检测试样的成焦量、100℃运动黏度,分析添加剂及基础油在高温条件下的黏度变化和成焦倾向,并进行烘箱静置对比试验。试验结果表明:250N基础油、20W-50成品油、PAO8基础油3种油样中,250N的成焦量上升较快,纯基础油100℃运动黏度总体呈上升趋势,20W-50成品油100℃运动黏度先下降最低达15.8%然后上升;二烷基二硫代磷酸锌(T203)是含添加剂基础油中成焦主要来源,其次是黏度指数改进剂,其他添加剂影响较小;以PAO为基础油的试样较250 N基础油成焦量明显下降,合成磺酸钙清净剂对250N基础油清净效果较PAO更好;黏度指数改进剂、复合剂、聚异丁烯丁二酰亚胺分散剂对油品100℃运动黏度变化影响较大,烘箱高温静置试验表明:乙丙共聚物黏指剂、酚型抗氧化剂使油品烘箱试验后100℃运动黏度下降。  相似文献   

16.
为探讨润滑油在高温高压等苛刻工况下的抗泡性能,以某型国产航空润滑油和进口酯类航空润滑油为研究对象,采用高温模拟氧化装置在175~290℃下进行氧化试验,测定不同温度下氧化后油样的100℃运动黏度和酸值,利用GC/MS分析油样氧化组分和主要产物,并分别对高温氧化油样的泡沫特性和空气释放值进行测定。试验结果表明:2种航空润滑油的黏度随着氧化温度的升高先增大后减小,且均在250℃达到黏度的最大值,但进口油由于极性分子间作用力的存在,其黏度值更加稳定;进口油在氧化温度过高时发生水解和热氧化,导致其酸值在高温下急剧增大,因而腐蚀性明显差于国产油;国产油在起泡倾向和空气释放性能方面均比进口油差,这是由于国产油中的PAO分子的表面聚合以及高温氧化条件下表面活性吸附层的形成,均增大了起泡倾向,并延长了空气释放时间,进而导致抗泡性能变差。  相似文献   

17.
通过测定不同黏度的聚α-烯烃(PAOs)、硅油及其不同调和比例混合基础油在-50~50℃时的运动黏度,研究调和基础油的黏度随调和组分和温度的变化规律。结果表明,调和基础油的实测黏度远小于按国际通用黏度模型计算得到的黏度值;黏度相差较大的PAO油与硅油调和时,调和基础油的高低温运动黏度均在两调和组分的黏度之间变化;而黏度接近的PAO油与硅油调和时,在一定成分范围内,调和基础油的低温运动黏度低于两调和组分的黏度,其低温流动性更加优异。特定的PAO油与硅油能够相互用作低温降黏剂进一步改善润滑油的低温性能。通过引入分子间相互作用对这一现象进行了解释。  相似文献   

18.
为进一步改进椰子油的润滑性能,采用己二酸与三羟甲基丙烷先酯化合成中间体,再与椰子油脂肪酸反应制备椰子油脂肪酸己二酸三羟甲基丙烷复合酯(简称复合酯),并测试复合酯的FTIR红外光谱、流变学性能、热-氧稳定性、摩擦学性能、水解稳定性、海洋微生物降解性等。结果表明:该复合酯具有良好的流变学性能和热稳定性,其40 ℃的黏度为114 mm2/s,黏度指数为159,倾点为-6 ℃,热分解起始温度为300 ℃,能满足较为苛刻的机械工况要求;复合酯还具有良好的摩擦学性能,相同条件下承载能力为椰子油的2.6倍,而且与复配添加剂(二烷基二硫代磷酸锌+十八胺)具有良好的感受性和配伍性能。所制复合酯的水解稳定性高于椰子油,海洋微生物14天的降解率大于80%,是一类性能优良的绿色酯类润滑油。  相似文献   

19.
建立了风机齿轮箱轴承动力学模型,基于弹性流体动力润滑理论和Hertz接触理论优化求解接触半宽,并建立考虑油膜润滑的滚动轴承磨损数值仿真模型以得到轴承磨损量。以1.5 MW风机齿轮箱轴承NCF2968为例,计算40℃下轴承润滑油运动黏度分别为320,460,680 mm~2/s时轴承各零件的磨损量,得出其中最适合轴承运行的润滑油黏度为460 mm~2/s。并对优化前后的轴承磨损数值仿真模型进行求解,优化后的模型更符合实际工况。  相似文献   

20.
借助高温氧化模拟加速装置,模拟金属存在下聚α-烯烃(PAO)航空润滑油基础油高温工作环境,对比分析添加金属Cu前后油样的外观、黏度和酸值变化,利用GC/MS检测不同温度下油样的微观组成,并根据物质结构分析PAO理化性能变化的原因。结果表明:金属Cu加速了PAO的高温裂解,产生了某些生色化合物,加速了油品的氧化变质,使油品黏度降低,并生成了酸性物质使油品酸值增加;GC/MS分析结果表明,金属Cu的存在会加速PAO的氧化和裂解,产生碳数更少的烃分子,也促进含双键的不饱和烃、含氧化合物等物质的生成,在宏观上使油样运动黏度降低、酸值增大和颜色加深。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号