共查询到20条相似文献,搜索用时 62 毫秒
1.
为识别数控机床运行过程中滚动轴承的运行状态,提高滚动轴承的故障状态诊断正确率,提出了一种基于小波包分解的改进遗传算法优化BP神经网络的滚动轴承故障识别方法。以滚动轴承的4种故障状态为研究对象,通过小波包分解振动信号,得到敏感特征向量;针对BP神经网络的缺点,运用改进遗传算法优化BP神经网络的阈值和权值,实现最优训练,建立更精确的滚动轴承IGA-BP状态预测模型。结果表明:IGA-BP预测模型收敛速度更快,预测准确率更高,证明了所提方法的有效性。 相似文献
2.
根据液压泵发生故障所表现出来的特征,采用小波包能量值提取的办法作为故障类型识别的特征量,采用BP神经网络对输入的特征量进行识别。实验结果表明:采用小波神经网络对液压泵故障类型的识别可以取得满意的效果。 相似文献
3.
为了提高轴承故障信号的诊断性能,采用小波分析和RBF神经网络相结合的方法对轴承振动信号进行故障分类。首先对轴承振动信号进行小波变化,采用软阈值去噪方法滤除振动信号噪声,然后对振动信号矩阵化处理,接着构建RBF神经网络,输入轴承振动信号特征向量,初始化权重和阈值,最后通过不断反向迭代得到稳定的RBF神经网络故障判别模型。实验证明:通过差异化设置隐藏层神经元数量,确定合适的RBF神经网络规模,经过小波去噪可以有效提高轴承故障判别准确率,相比于常见轴承故障分类算法,算法具有更高的故障判别准确率。 相似文献
4.
5.
6.
通过状态监测进行轴承故障报警,能有效避免设备灾难性事故的发生。基于数据时序特征重构的故障检测法由于仅采用正常数据进行训练, 能有效避免故障数据不足而导致的模型检测精度下降。然而,此类方法的故障阈值确定依赖于大量的历史数据,且对检测精度有着极大的影响。为此,提出基于深度SVDD-CVAE的轴承自适应阈值故障检测方法。针对时序信号特征增强提取构建ConvLSTM作为基础单元的CVAE特征压缩提取框架,有效提取轴承故障微弱特征;结合SVDD自适应学习特征空间超球面,实现故障检测阈值的自适应确定;最后,通过全局误差损失反向传播对深度SVDD-CVAE框架进行迭代优化。实验结果表明:所提出的方法能有效提取轴承微弱故障特征、自适应确定阈值,并在IMS轴承数据集上取得97.7%的检测准确率。 相似文献
7.
左大利 《组合机床与自动化加工技术》2021,(8):11-15
传统滚动轴承工况识别方法需要对采集到的轴承振动信号进行人工特征提取,提出一种基于自适应经验小波分解(adaptive empirical wavelet decomposition,AEWD)和深层Wasserstein网络(deep Wasserstein network,DWN)的工况识别方法.首先,改进经验小波分... 相似文献
8.
基于小波包与概率神经网络的液压泵故障模式识别 总被引:1,自引:0,他引:1
小波包具有良好的去噪效果和高频分析能力,而概率神经网络具有很好的分类效果。采用小波包分解重构液压泵故障特征信号,并提取第三层各频率段的节点能量作为特征向量,将特征向量概率神经网络模型的输入向量对液压泵故障模式进行识别。通过采用LabVIEW和MATLAB混合编写的识别软件系统对液压泵故障识别,证明了将该方法用在液压泵故障模式识别上,能取得良好的效果。 相似文献
9.
10.
已知试验轴承的故障特征参数与非故障特征参数,采用何种方法对采自实际应用场合的轴承信号进行判断和处理是问题的关键.对比感知器网络和径向基函数网络对轴承的诊断结果,证明径向基函数网络具有较多的优越性,便于实际应用. 相似文献
11.
12.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。 相似文献
13.
14.
以SCARA机器人为研究对象,在ADAMS软件中建立SCARA机器人模型,进行仿真。采集SCARA机器人大臂前后端、小臂前后端及底座等容易出现裂纹部位的加速度数据;在MATLAB中运用BP神经网络建立SCARA机器人故障诊断模型,实现利用BP神经网络对SCARA机器人故障进行智能识别与分类。结果表明:BP神经网络的计算结果与期望输出基本一致,验证了其准确性及可靠性。 相似文献
15.
实际工业机器人在恶劣工作环境中易出现故障,传统的故障诊断大多都是通过振动信号进行,但是振动数据在实际工厂难以采集,给工业机器人的故障诊断造成了极大困扰。针对这一问题,提出一种基于小波包能量谱(WPES)与卷积神经网络(CNN)的工业机器人电流数据的智能故障诊断模型。该模型通过小波包将原始电流信号分解为多个子频带,计算每个子频带对应的能量特征,当工业机器人出现故障时,能量特征会发生变化,并将能量谱特征转化为二维矩阵用于设计、训练和测试所提出的模型。实验结果表明:采用WPES-CNN模型进行故障诊断,故障识别率达到了99.9%以上。 相似文献
16.
17.
18.
19.
针对BP神经网络在数控机床故障预测中出现的收敛速度慢和训练容易陷入局部极值问题,提出一种基于人工免疫算法优化BP神经网络(IMBP)的数据机床故障诊断算法。介绍了常见的数控机床故障类型和分类,阐述了人工免疫算法和BP神经网络以及人工免疫优化BP神经网络算法的工作流程。利用免疫算法的全局搜索性能先对神经网络权值和阈值进行全局优化,加快了BP算法训练过程的收敛速度,减少训练过程所需要的时间。通过仿真性能测试分析,结果表明:与BP、GABP和IMBP 3种算法对比,比BP神经网络算法的数控机床故障预测诊断提高了18.3%,比GABP神经网络算法提高了12.05%,提高了数控机床故障诊断精度。 相似文献