首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
张宇鹏  张新平  钟志源 《金属学报》2007,43(11):1221-1227
利用低温分解型造孔剂与梯级热等静压烧结和常规烧结的匹配工艺成功制备出了梯度孔隙率与大孔隙尺寸多孔NiTi形状记忆合金.多孔合金的孔隙率为30%-61%,孔隙平均尺寸可根据不同预处理工艺在50-500 μm之间变化,且具有较高的开孔率(最高可达85%).所制备的径向梯度孔隙率多孔NiTi合金具有良好的力学性能,线性超弹性应变大于4%;热分析和XRD分析表明,所制备的多孔合金呈现明显的马氏体转变和逆转变特征,相变特征温度随孔隙率的提高而降低.  相似文献   

2.
以NH_4HCO_3为造孔剂,利用元素粉末混合烧结法制备了多孔NiTi形状记忆合金。研究了压制压力、烧结温度和烧结时间对多孔NiTi合金孔结构的影响,并分析了其物相组成。结果表明:随压制压力的增加,平均孔径和孔隙率逐渐减小;随烧结温度提高,多孔NiTi合金的平均孔径减小、孔隙率先增加后减少,孔隙分布趋于均匀;随烧结时间延长,多孔NiTi合金的平均孔径及孔隙率先增加后减少。在造孔剂添加量50%,压制压力250 MPa,烧结温度1000℃,烧结时间6 h条件下可制备出孔结构均匀(平均孔径为314μm,孔隙率56.3%)的多孔NiTi合金,其基体相为B2(NiTi)相。  相似文献   

3.
轻质高强NiTi形状记忆合金的制备及其超弹性行为   总被引:1,自引:0,他引:1  
采用球形尿素颗粒预造孔工艺结合梯级粉末烧结方法制备出孔形规则、孔径大的轻质高强多孔NiTi形状记忆合金.通过控制造孔剂(尿素)的含量可有效调节多孔合金的孔隙特征,获得孔径均匀,孔形圆整和孔隙率可控的样品,其中孔径为296-732 um,孔隙率为31%-61.6%;尿素形状和尺寸对多孔合金的孔隙特征有决定性影响,具有几何形态遗传性;尿素对多孔NiTi合金的组成相影响很小,相变仍具有马氏体相变特征;合金具有优良的力学性能和稳定的线性超弹性.  相似文献   

4.
采用球形尿素颗粒预造孔工艺结合梯级粉末烧结方法制备出孔形规则、孔径大的轻质高 强多孔NiTi形状记忆合金. 通过控制造孔剂(尿素)的含量可有效调节多孔合金的孔隙特征, 获得孔径均匀、孔形圆整和孔隙率可控的样品, 其中孔径为296-732 um, 孔隙率为31%-61.6%; 尿素形状和尺寸对多孔合金的孔隙特征有决定性影响, 具 有几何形态遗传性; 尿素对多孔NiTi合金的组成相影响很小, 相变仍具有马氏体相变特征; 合金具有优良的力学性能和稳定的线性超弹性.  相似文献   

5.
以不同颗粒尺寸的Ni/Ti粉末为原料,采用微波烧结技术制备了多孔NiTi合金,并系统考察了颗粒尺寸对多孔NiTi合金的显微结构和力学性能的影响。结果表明,随着颗粒尺寸的减小,多孔NiTi合金中的Ti2Ni和Ni3Ti第二相减少而单质Ni相消失。同时,多孔NiTi合金的孔隙形貌由带尖角的不规则形状向近球形转变。此外,多孔NiTi合金的孔隙率和孔径随着颗粒尺寸的增大而增大,而洛氏硬度、抗压强度和抗弯强度均下降。因此,减小颗粒尺寸有利于获得理想的显微结构(纯净的物相和均匀的孔隙结构)和提高微波烧结多孔NiTi合金的力学性能。  相似文献   

6.
以不同颗粒尺寸的Ni/Ti粉末为原料,采用微波烧结技术制备了多孔NiTi合金,并系统考察了颗粒尺寸对多孔NiTi合金的显微结构和力学性能的影响。结果表明,随着颗粒尺寸的减小,多孔NiTi合金中的Ti_2Ni和Ni_3Ti第二相减少而单质Ni相消失。同时,多孔NiTi合金的孔隙形貌由带尖角的不规则形状向近球形转变。此外,多孔NiTi合金的孔隙率和孔径随着颗粒尺寸的增大而增大,而洛氏硬度、抗压强度和抗弯强度均下降。因此,减小颗粒尺寸有利于获得理想的显微结构(纯净的物相和均匀的孔隙结构)和提高微波烧结多孔NiTi合金的力学性能。  相似文献   

7.
利用放电等离子烧结技术制备NiTi/表面多孔Ti梯度合金,研究不同烧结温度对梯度合金微观组织、表面孔隙特征、力学性能及体外生物活性的影响及机理。结果表明:随着烧结温度的升高,梯度合金组织由NiTi、α-Ti、Ni、Ti_2Ni、Ni_3Ti混合相逐渐转变为单一NiTi和α-Ti相,内外层界面形成良好冶金结合,表面孔隙率和平均孔径呈缓慢减小趋势;同时抗压强度值快速增大而弹性模量值变化不大;1000℃制备的梯度合金不仅具有良好的表面孔隙特征(孔隙率35.8%、平均孔径423μm)、较高的抗压强度(632 MPa)、较低的弹性模量(9 GPa)及优异的超弹性行为(超弹性恢复应变4%),而且体外生物活性显著提高。  相似文献   

8.
为了获得轻质、高强和高阻尼的多孔NiTi合金,采用微波烧结协同镁造孔技术制备多孔NiTi合金.考察多孔NiTi合金的显微组织、力学性能、相变行为、超弹性和阻尼性能.结果表明:当烧结温度低于或等于900℃时,多孔NiTi合金主要由B2 NiTi相和少量B19'NiTi相组成.随着烧结温度的升高,多孔NiTi合金的孔隙率逐...  相似文献   

9.
利用放电等离子烧结技术制备了基体为NiTi、表面为多孔NiTi的生物医用梯度合金,研究了烧结温度对梯度合金的微观结构、显微组织演变、表面孔隙特征及力学性能的影响。结果表明:随着烧结温度升高,合金由Ti、Ni、Ti_2Ni、Ni_3Ti混合相逐渐演变为以NiTi相为主及少量残留Ti_2Ni、Ni_3Ti相组成的组织,基体与多孔层界面处裂纹及缺陷逐渐减少并形成稳定的冶金结合,内外层晶粒不断细化,但过高的烧结温度会导致多孔层孔隙融合连通,使得梯度结构遭到破坏,同时表面多孔层孔隙率与平均孔径呈缓慢减小趋势;合金压缩弹性模量随烧结温度升高变化不明显,而抗压强度呈显著增大趋势。与块体NiTi合金及多孔NiTi合金相比,所制备梯度合金不仅具有良好的界面结合和表层孔隙特征、较高的抗压强度及较低的弹性模量,还具有优异的超弹性性能。  相似文献   

10.
高线性超弹性多孔NiTi合金的压缩力学行为   总被引:1,自引:0,他引:1  
采用造孔技术结合粉末冶金烧结工艺制备多孔NiTi合金,并利用精密万能力学性能试验机对孔隙率为22.4%~60.6%的多孔NiTi合金样品进行循环压缩实验,以表征其压缩力学性能及超弹性.结果表明:所制备的合金经若干个应力-应变循环"训练"后其输入、输出能量可达平衡,应变水平高达4%,线性超弹性可靠,弹性模量稳定;循环加载条件下,残余应变量随孔隙率的增加而增大,但随循环数的增加而减小;残余变形与其影响因素之间可用双曲线函数关系描述.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号