共查询到20条相似文献,搜索用时 19 毫秒
1.
In this study, poly(methyl methacrylate)/p-phenylenediamine-graphene oxide, poly(methyl methacrylate)/graphene, and poly(methyl methacrylate)/graphene oxide nanocomposite series were prepared using simple solution blending technique. In poly(methyl methacrylate)/p-phenylenediamine-graphene oxide series, graphene oxide modified with p-phenylenediamine was used to improve its dispersion and interfacial strength with matrix. Morphology study of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide nanocomposite revealed better dispersion of p-phenylenediamine-graphene oxide flakes and gyroid patterning of poly(methyl methacrylate) over the filler surface. Due to nonconducting nature of graphene oxide, there was no significant variation in the thermal or electrical conductivity of these nanocomposites. Thermal conductivity of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide 1.5 was 1.16 W/mK, while the electrical conductivity was found to be 2.3 × 10?3 S/cm. 相似文献
2.
以多壁碳纳米管(MWNTs)为原料,使用纵向氧化切割法制备了氧化石墨烯纳米带(GONR),通过物理吸附作用制备了聚醚型苯并咪唑(OPBI)非共价修饰GONR(FGONR)。采用溶液浇注法制得了聚丙烯酸甲酯(PMMA)/FGONR复合材料薄膜,对FGONR及其PMMA复合材料的结构与性能进行了研究,同时对比了以MWNTs,GONR,OPBI改性MWNTs(FCNTs)增强的PMMA复合材料的力学性能。结果表明:OPBI成功地物理吸附到GONR的表面,且FGONR在PMMA中具有良好的分散性能;在PMMA/FGONR复合材料中,当FGONR的质量分数为0.5%时,复合材料的拉伸强度达到49.50 MPa,杨氏模量达到2.27 GPa,其增强效果比MWNTs,GONR,FCNTs的要好,FGONR有望作为制备高性能复合材料的一种良好的纳米填料。 相似文献
3.
Chia-Hsin Lee An-Ting Chien Ming-Huei Yen King-Fu Lin 《Journal of Polymer Research》2008,15(4):331-336
The exfoliated poly(methyl acrylate-co-methyl methacrylate)/montmorillonite (MMT) nanocomposite latex solutions fabricated
by soap-free emulsion polymerization were able to cast into a film. The films were transparent and ductile unless more than
5 wt% of MMT was incorporated. With the MMT content higher than 5 wt%, the inflammable residuals of nanocomposites after combustion
could preserve their original film profile acting like an inflammable scaffold. Moreover, as 20 wt% MMT was incorporated,
the yield strength of the films was increased up to 20 times and Young’s modulus up to 2,000 times. However, the water vapor
permeability coefficient of the films was only decreased down to its half value. This unexpected behavior of permeability
was associated with the decrease of T
g as the content of MMT was increased, owing to the large difference of the reactivity ratios between methyl acrylate and methyl
methacrylate monomers and their differential absorption to the MMT during copolymerization. 相似文献
4.
Poly(methyl methacrylate) (PMMA)–clay nanocomposite (PCN) materials were synthesized through in situ intercalative polymerization. A cationic surfactant, [2(dimethylamino)ethyl]triphenylphosphonium bromide, was used as an intercalating agent with pristine Na+‐montmorillonite (MMT). The synthesized PCN materials were subsequently investigated by a series of characterization techniques, including wide‐angle powder X‐ray diffraction, Fourier transform IR spectroscopy, transmission electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Compared to pure PMMA, the PCN materials exhibit higher thermal degradation temperatures and glass‐transition temperatures. The dielectric properties of PCN blending with a commercial PMMA material in film form with clay loading from 0.5 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 35–100°C. Significantly depressed dielectric constants and losses were observed for these PCN‐blending materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2175–2181, 2005 相似文献
5.
运用本体聚合法合成了聚甲基丙烯酸甲酯(PMMA)和分别用三种交联剂交联的PMMA。以PMMA和交联的PMMA为感湿膜制成电容式湿度传感器,在10%~90%RH范围内,这些传感器的电容随相对湿度呈线性规律变化。交联的PMMA传感器具有正的温度系数,但与乙酸丁酸纤维素(CAB)传感器相比,PMMA的温度依赖性更小。交联的PMMA传感器能耐有机蒸气,在饱和丙酮蒸气中放置30min后,3次测试循环后在90%RH下传感器电容的变化约为1%。在高温、高湿、油烟气等各种苛刻环境中放置预定时间后,传感器的漂移一般在±2%RH范围内。 相似文献
6.
Stanislav I. StoliarovPhillip R. Westmoreland Marc R. Nyden Glenn P. Forney 《Polymer》2003,44(3):883-894
The theory and implementation of reactive molecular dynamics (RMD) are presented. The capabilities of RMD and its potential use as a tool for investigating the mechanisms of thermal transformations in materials are demonstrated by presenting results from simulations of the thermal degradation of poly(methyl methacrylate) (PMMA). While it is known that depolymerization must be the major decomposition channel for PMMA, there are unanswered questions about the nature of the initiation reaction and the relative reactivities of the tertiary and primary radicals formed in the degradation process. The results of our RMD simulations, performed directly in the condensed phase, are consistent with available experimental information. They also provide new insights into the mechanism of the thermally induced conversion of this polymer into its constituent monomers. 相似文献
7.
The large-deformation three-dimensional glass-rubber constitutive model for isotropic, amorphous, linear polymers near the glass transition, previously proposed, has been extended to include a spectrum of network relaxations. In addition, an experimental programme of uniaxial tension and compression tests was carried out on high molecular weight cast sheets of poly(methyl methacrylate) (PMMA), with varying strain-rate and temperature across the range from 114 to 190 °C, encompassing the thermoforming range of practical importance. The extended model was found to fit successfully the data for PMMA, provided a doublet network relaxation spectrum was employed. The original model, with only a single network relaxation, was found to be grossly inadequate when there was significant network relaxation by entanglement slippage. Parameters of the model for PMMA, obtained by fitting to the new data, were compared with values obtained by other routes. 相似文献
8.
PMMA/MMT nanocomposites were successfully synthesized via in situ intercalative polymerization, and characterized by means of wide‐angle X‐ray diffractometry, transmission electron microscopy, thermal gravimetric analysis, dynamic mechanical analysis and Fourier‐transform infrared analysis. The nanocomposites possess partially exfoliated and partially intercalated structure, in which the silicate layers are exfoliated into nanometre secondary particles with thickness of less than 20 nm and uniformly dispersed in the polymer matrix. In comparison with pure PMMA, the thermal stability, glass transition temperature, and mechanical properties of the polymer are notably improved by the presence of the nanometric silicate layers. It was found that part of the PMMA chains in the nanocomposites are well immobilized inside and/or onto the layered silicates and, therefore, the unique properties of the nanocomposites result from the strong interactions between the nanometric silicate layers and the polymer chains. Copyright © 2003 Society of Chemical Industry 相似文献
9.
Dual-phase continuity and phase inversion of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends processed in a twin-screw extruder was investigated using a selective extraction technique and scanning electron microscopy. Emphasis was placed on investigating the effects of viscosity ratio, blend composition, processing variables (mixing time and annealing) and diblock copolymer addition on the formation of bi-continuous phase structure (BPS) in PS/PMMA blends. The experimental results were compared with the volume fraction of phase inversion calculated with various semi-empirical models. The results showed that the formation of a BPS strongly depends on the blend composition and the viscosity ratio of the constituent components. Furthermore, BPS was found in a wide volume fraction interval. Increasing the mixing time and the addition of diblock copolymer, both led to a narrowing range of volume fraction in which BPS exists. Quiescent annealing coarsened the structure but indicated no qualitative changes. Some model predictions for phase inversion could predict qualitative aspects of the observed windows of co-continuity but none of the models could account quantitatively for the observed data. 相似文献
10.
The miscibility of a triblock copolymer poly(ethylene oxide)-poly(dimethylsiloxane)-poly(ethylene oxide) with syndiotactic and isotactic poly(methylmethacrylate) wasstudied. Although isotactic poly(methyl methacrylate) (PMMA) was miscible with poly(ethylene oxide) (PEO) in the pure state, it was immiscible with the PEO end blocks in the copolymer. In comparison, the syndiotactic poly(methyl methacrylate) (sPMMA) was miscible with the PEO blocks as indicated by melting point depression, decrease in crystallinity, and slower rate of spherulite growth of PEO. When blends of the triblock copolymer were cooled to low temperatures, the poly(dimethylsiloxane) (PDMS) middle block which resided in the interlamellar region of PEO spherulites also crystallized; the development of PDMS crystals was clearly suppressed at high sPMMA contents.On leave from Union Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 相似文献
11.
Interpenetrating polymer networks (IPNs) based on polyorganosiloxane/poly(methyl methacrylate) were prepared via sequential polymerization and the damping and mechanical properties of these materials were studied. The effects of crosslinking in both the first‐ and second‐formed networks were investigated. The experimental results show that the extent of damping of the IPNs was decreased and shifted to higher temperature as the content of poly(methyl methacrylate) was increased; the mechanical properties such as tensile strength and hardness (Shore A) were increased with increasing poly(methyl methacrylate) (PMMA) content. The loss factor peak becomes narrower with increasing crosslinker level in the first‐formed network (polysiloxane network), while increasing crosslinker content in the second‐formed network (PMMA network) results in a broadening of the IPN transition peak and moves the IPN transition to higher temperatures as well. 相似文献
12.
Poly(methyl methacrylate) composites reinforced with natural protein biofibers from chicken feathers were prepared and evaluated through a series of tensile tests. Afterward, the samples were analyzed by optical and scanning electron microscopy studies, to obtain a clear picture of the tensile-induced damages.The hydrophobic nature of keratin fiber produces an excellent compatibility between fibers and PMMA matrix. This fact is reflected in the good dispersion of protein fibers achieved without use of coupling agents. The normally rigid behavior of PMMA may be modified by using keratin fibers as were demonstrated by tensile test; while at the same time, Young's modulus of composite material is also increased. The microscopic studies realized at the corresponding fracture surface level show good adherence between fibers and matrix. These results demonstrate that feather fibers could be a new source of natural high structure fibers useful to create new materials provided with satisfactory properties. 相似文献
13.
Well-defined poly(methyl methacrylate)-silica nanocomposites were produced by “grafting through” using reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of silica nanoparticle was modified covalently by attaching methacryl group to the surface using 3-methacryloxypropyldimethylchlorosilane. Polymerization of methyl methacrylate (MMA) using the 4-cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid RAFT agent, produced the PMMA-SiO2 nanocomposites. Characterization of these well-defined nanocomposites included FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), transmission electron microscopy (TEM) and dynamic mechanical analysis. These results show that the Tg values are higher and the mechanical strength of the PMMA-SiO2 nanocomposites is slightly improved when compared to bulk PMMA. Further, the molecular weight of the PMMA (up to Mn = 100,000) is controlled and the SiO2 are well dispersed in the PMMA matrix. 相似文献
14.
Physical aging of amorphous poly(methyl methacrylate) has been studied by low frequency Raman scattering, broad-band dielectric spectroscopy, low frequency high resolution mechanical spectroscopy and differential scanning calorimetry. The material was subjected to different thermal histories by isothermal aging. A consistent relationship between the changes caused by the physical aging in nanostructure and molecular dynamics has been found. The aging makes the structure more homogeneous at a scale of few nanometers, bringing it to a structural state of lower energy. These structural changes affect mainly the -relaxation, however, some increase in the relaxation strength as well as an increase in the activation energy of the β-relaxation is also observed. 相似文献
15.
Kazuki Matsuura Keiichi Kuboyama Toshiaki Ougizawa 《Polymer Engineering and Science》2021,61(1):77-84
The effect of tacticity on the interfacial region between poly(methyl methacrylate) (PMMA) and silica in a PMMA/silica nanocomposite was investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The glass transition temperature (Tg) values of the syndiotactic (st-) and atactic (at-) PMMA/silica nanocomposites are higher than those of the neat PMMA. Conversely, the Tg of the isotactic (it-) PMMA/silica nanocomposite is slightly higher than that of the neat it-PMMA. DSC and XRD results suggest that the restriction of the PMMA chain mobility in the silica nanoparticle interfacial region heightens as the syndiotactic content increases. FT-IR results show that this phenomenon is caused by the interaction between the carbonyl group of PMMA and the silanol group on the silicon dioxide surface. Therefore, it can be concluded that the syndiotactic-rich PMMA has a significantly different molecular mobility from that of the neat PMMA in the interfacial region with silica nanoparticle surface than isotactic-rich PMMA. 相似文献
16.
In this paper it is shown that elastic properties of a poly(methyl methacrylate) melt in the linear range of deformation are more significantly influenced by the addition of silica nanoparticles than viscous ones. The effect is the strongest in the steady-state which is reached at several thousand seconds. That is the reason why the often used dynamic-mechanical experiments are not a very suitable method for investigations of that kind. Therefore, creep and creep-recovery tests were applied for the characterisation of the filled materials. The linear steady-state recoverable compliances following from the recovery experiments increase by a factor of 6 at the highest measured volume content of 2.1%. This finding is explained by the existence of long retardation times in the filled materials resulting from interactions between the fillers and matrix molecules attached to their surfaces which reduce their molecular mobility. Retardation spectra calculated from the recovery curves quantify these assumptions. The model is supported by the experimental finding that the recoverable compliance becomes smaller above a certain stress applied and approaches that of the matrix as such a behaviour could be explained by a detachment of the molecules from the particle surface. The paper demonstrates that investigations of elastic properties of nanoparticle filled polymers in the molten state at long experimental times are a very sensitive tool to get an insight into interactions between particles and macromolecules of such systems. 相似文献
17.
A series of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposite were prepared by successfully dispersing the inorganic nanolayers of MMT clay in an organic PMMA matrix via in situ photoinitiated free radical polymerization. Methyl methacrylate monomer was first intercalated into the interlayer regions of organophilic clay hosts by “click” chemistry followed by a typical photoinitiated free radical polymerization. The intercalated monomer was characterized by FT-IR spectroscopy, elemental analysis and thermogravimetric analysis methods. The intercalation ability of the modified monomer and exfoliated nanocomposite structure were confirmed by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Thermal stability of PMMA/MMT nanocomposites was also studied by both differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). 相似文献
18.
Yuwei Wang Xia Liao Shaojie Li Yong Luo Qi Yang Guangxian Li 《Polymer International》2016,65(10):1195-1203
The effects of oxygen functional groups and alkyl chains at the surface of graphene oxide (GO) on the thermal stability, mechanical properties and foaming behavior of poly(methyl methacrylate) (PMMA) nanocomposites were investigated. Alkyl‐functionalized GO (GO‐ODA) was prepared by grafting octadecylamine (ODA) on the surface of GO. PMMA/GO and PMMA/GO‐ODA nanocomposite were obtained by solution blending and were foamed using supercritical carbon dioxide (scCO2). GO‐ODA, with the presence of alkyl chains, showed a better dispersion capability in PMMA matrix than GO with a large amount of oxygen functional groups. In addition, the good dispersion capability increased thermal stability and mechanical strength. In comparison with PMMA/GO samples foamed at 70 °C, PMMA/GO‐ODA nanocomposite foams displayed improved cell structures with higher cell density, smaller cell size and more homogeneous cell size distribution, which results from the strong heterogeneous nucleation due to alkyl chains on the GO surface. The foaming behaviors became more complicated at 80 °C as the GO might be intercalated and exfoliated with the aid of scCO2, thus further enhancing the heterogeneous nucleation during the foaming process. The results indicated that the surface chemistry of GO was closely related to the properties and foaming behavior of the nanocomposites. © 2016 Society of Chemical Industry 相似文献
19.
Ji Ho Youk 《Polymer》2003,44(18):5053-5056
A facile method for in situ anchoring of gold nanoparticles onto the surface of polymer nanospheres was successfully developed in this study. As polymer nanospheres, amphiphilic poly(methyl methacrylate) (PMMA)/poly(allylamine) (PAA) nanospheres were prepared by graft copolymerization of methyl methacrylate from PAA. The gold nanoparticles anchored were spherically symmetric and the average sizes were ∼12 nm for all samples. It was found that surface-grafted PAA effectively anchored and stabilized gold nanoparticles for a long period of time. 相似文献
20.
Poly(methyl methacrylate)‐grafted cellulose nanocrystals: One‐step synthesis,nanocomposite preparation,and characterization 下载免费PDF全文
Stephanie A. Kedzior Lexa Graham Carolyn Moorlag Brynn M. Dooley Emily D. Cranston 《加拿大化工杂志》2016,94(5):811-822
Cellulose nanocrystals (CNCs) are ideal reinforcing agents for polymer nanocomposites because they are lightweight and nano‐sized with a large aspect ratio and high elastic modulus. To overcome the poor compatibility of hydrophilic CNCs in non‐polar composite matrices, we grafted poly(methyl methacrylate) (PMMA) from the surface of CNCs using an aqueous, one‐pot, free radical polymerization method with ceric ammonium nitrate as the initiator. The hybrid nanoparticles were characterized by CP/MAS NMR, X‐ray photoelectron spectroscopy, infrared spectroscopy, contact angle, thermogravimetric analysis, X‐ray diffraction, and atomic force microscopy. Spectroscopy demonstrates that 0.11 g/g (11 wt %) PMMA is grafted from the CNC surface, giving PMMA‐g‐CNCs, which are similar in size and crystallinity to unmodified CNCs but have an onset of thermal degradation 45 °C lower. Nanocomposites were prepared by compounding unmodified CNCs and PMMA‐g‐CNCs (0.0025–0.02 g/g (0.25–2 wt %) loading) with PMMA using melt mixing and wet ball milling. CNCs improved the performance of melt‐mixed nanocomposites at 0.02 g/g (2 wt %) loading compared to the PMMA control, while lower loadings of CNCs and all loadings of PMMA‐g‐CNCs did not. The difference in Young's modulus between unmodified CNC and polymer‐grafted CNC composites was generally insignificant. Overall, ball‐milled composites had inferior mechanical and rheological properties compared to melt‐mixed composites. Scanning electron microscopy showed aggregation in the samples with CNCs, but more pronounced aggregation with PMMA‐g‐CNCs. Despite improving interfacial compatibility between the nanoparticles and the matrix, the effect of PMMA‐g‐CNC aggregation and decreased thermal stability dominated the composite performance. 相似文献