首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Over the past several decades, the automobile industry has denoted significant research efforts to developing in‐wheel‐motor‐driven autonomous ground vehicles (IWM‐AGVs) with active front‐wheel steering. One of the most fundamental issues for IWM‐AGVs is path following, which is important for automated driving to ensure that the vehicle can track a target‐planned path during local navigation. However, the path‐following task may fail if the system experiences a stuck fault in the active front‐wheel steering. In this paper, a fault‐tolerant control (FTC) strategy is presented for the path following of IWM‐AGVs in the presence of a stuck fault in the active front‐wheel steering. For this purpose, differential steering is used to generate differential torque between the left and right wheels in IWM‐AGVs, and an adaptive triple‐step control approach is applied to realize coordinated lateral and longitudinal path‐following maneuvering. The parameter uncertainties for the cornering stiffness and external disturbances are considered to make the vehicles robust to different driving environments. The effectiveness of the proposed scheme is evaluated with a high‐fidelity and full‐car model based on the veDYNA‐Simulink joint platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号