首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustical parameters extracted from the recorded voice samples are actively pursued for accurate detection of vocal fold pathology. Most of the system for detection of vocal fold pathology uses high quality voice samples. This paper proposes a hybrid expert system approach to detect vocal fold pathology using the compressed/low quality voice samples which includes feature extraction using wavelet packet transform, clustering based feature weighting and classification. In order to improve the robustness and discrimination ability of the wavelet packet transform based features (raw features), we propose clustering based feature weighting methods including k-means clustering (KMC), fuzzy c-means (FCM) clustering and subtractive clustering (SBC). We have investigated the effectiveness of raw and weighted features (obtained after applying feature weighting methods) using four different classifiers: Least Square Support Vector Machine (LS-SVM) with radial basis kernel, k-means nearest neighbor (kNN) classifier, probabilistic neural network (PNN) and classification and regression tree (CART). The proposed hybrid expert system approach gives a promising classification accuracy of 100% using the feature weighting methods and also it has potential application in remote detection of vocal fold pathology.  相似文献   

2.
为了在病理嗓音识别中为特征参数选择提供依据,提出声带非对称力学建模仿真病变声带并进行分析研究。依据声带的分层结构和组织特性,建立声带力学模型,耦合声门气流,求取模型输出的声门源激励波形。采用遗传粒子群 拟牛顿结合优化算法(Genetic particle swarm optimization based on quasi-Newton method, GPSO-QN)将模型输出的声门源和实际目标声门波相匹配,提取优化模型参数。仿真实验结果表明,该声带模型能产生与实际声门源相一致的声门波形,同时也证明了左右声带生理组织间的非对称性是产生病理嗓音的重要原因。  相似文献   

3.
基于信息增益的文本特征权重改进算法   总被引:2,自引:0,他引:2  
传统tf.idf算法中的idf函数只能从宏观上评价特征区分不同文档的能力,无法反映特征在训练集各文档以及各类别中分布比例上的差异对特征权重计算结果的影响,降低文本表示的准确性。针对以上问题,提出一种改进的特征权重计算方法tf.igt.igC。该方法从考察特征分布入手,通过引入信息论中信息增益的概念,实现对上述特征分布具体维度的综合考虑,克服传统公式存在的不足。实验结果表明,与tf.idf.ig和tf.idf.igc 2种特征权重计算方法相比,tf.igt.igC在计算特征权重时更加有效。  相似文献   

4.
汪涛  王洋  赵德鑫 《智能安全》2024,3(2):70-75
随着陆海空一体化6G通信网络的不断发展,水声调制信号识别技术在民用和军用领域中均具有十分重要的意义与价值,以保障通信系统的信息安全。本文首先从现有的识别方法入手,对经典的水声通信调制识别方法进行了系统梳理;其次,设计了一种迁移学习策略的水声通信调制识别方法,并通过水声信道建模生成了4种典型水声通信信号的数据集(包括BPSK、QPSK、2FSK和4FSK),采用小波方法获取信号时频特征,基于迁移学习理论设计AlexNet网络,以实现水声通信信号的调制方式识别。仿真实验结果表明,所提出方法在低信噪比下的识别率均能保持在85%以上,具有较好的识别性能。  相似文献   

5.
音频自动分类中的特征分析和抽取   总被引:8,自引:1,他引:8  
音频特征分析和抽取是音频自动分类的基础,本文将音频对象分为静音,噪音,纯语音,带背景音语音,音乐等5类,从帧层次和段层次上深入分析了不同类音频之间的区别性特征,包括帧层次上的MFCC,频域能量,子带能量,过零率,频谱中心等特征,在此基础上计算了段层次上的基本音频特征,包括静音比率,子带能量比均值等,提出了3个音频”流”特征-High-ZCR比率,Low-Frequency-Energy比率,频谱流量.设计并实现了一种基于支持向量机(support vector machine)的自动分类器,考察了上述特征组成的特征集合在该分类器中的分类性能.实验表明,本文提出的特征有效,分类性能良好.  相似文献   

6.
成像声纳采集的水声图像分析是自动水下潜器研究中的一个重要课题,该文提出了一种基于图像边缘Radon变换的水声图像矩特征提取和分类方法。使用一种形态学边缘提取算子和细化算法提取二维图像中目标的轮廓,构造目标轮廓在 Radon变换空间的平移、比例和旋转矩不变量,应用于3类水下物体的分类中,实验仿真结果表明该方法在运算速度上优于Hu’s不变矩和图像目标面Radon投影空间不变矩,具有很好的性能和较高的实用价值。  相似文献   

7.
Relief算法是一个过滤式特征选择算法,通过一种贪心的方式最大化最近邻居分类器中的实例边距,结合局部权重方法有作者提出了为每个类别分别训练一个特征权重的类依赖Relief算法(Class Dependent RELIEF algorithm:CDRELIEF).该方法更能反映特征相关性,但是其训练出的特征权重仅仅对于衡量特征对于某一个类的相关性很有效,在实际分类中分类精度不够高.为了将CDRELIEF算法应用于分类过程,本文改变权重更新过程,并给训练集中的每个实例赋予一个实例权重值,通过将实例权重值结合到权重更新公式中从而排除远离分类边界的数据点和离群点对权重更新的影响,进而提高分类准确率.本文提出的实例加权类依赖RELIEF (IWCDRELIEF)在多个UCI二类数据集上,与CDRELIEF进行测试比较.实验结果表明本文提出的算法相比CDRELIEF算法有明显的提高.  相似文献   

8.
首次从线性可分性的角度探讨了人脸图像的性别鉴别问题。通过对常用线性与非线性特征抽取方法以及一类改进的非线性特征抽取方法的对比分析及不同情况下性别鉴别的实验对比;较全面地考察了各种特征抽取方法所对应的数据的线性可分性及分类效果。首次提出从人脸肤色等角度考虑人脸图像的性别鉴别问题;并给出了指示意义较强的鉴别方法与方案建议。  相似文献   

9.
新型快速中文文本分类器的设计与实现   总被引:1,自引:0,他引:1  
为了提高中文文本分类的效率与精度,设计了一种新型的分类器。该分类器采用基于词频、互信息和类别信息的综合评估函数进行选择特征;在特征权重计算上,由于传统TF-IDF方法没有考虑特征类间和类内分布,提出了一种将词频和综合评估函数值相结合的权重计算方法;最后设计了一种基于贝叶斯原理的快速分类器。实验证明该分类器简单有效。  相似文献   

10.
在传统的文本分类中,文本向量空间矩阵存在维数灾难和极度稀疏等问题,而提取与类别最相关的关键词作为文本分类的特征有助于解决以上两个问题。针对以上结论进行研究,提出了一种基于关键词相似度的短文本分类框架。该框架首先通过大量语料训练得到word2vec词向量模型;然后通过TextRank获得每一类文本的关键词,在关键词集合中进行去重操作作为特征集合。对于任意特征,通过词向量模型计算短文本中每个词与该特征的相似度,选择最大相似度作为该特征的权重。最后选择K近邻(KNN)和支持向量机(SVM)作为分类器训练算法。实验基于中文新闻标题数据集,与传统的短文本分类方法相比,分类效果约平均提升了6%,从而验证了该框架的有效性。  相似文献   

11.
特征权重算法TF—IDF是文本分类的重要算法之一,该算法IDF值容易受特征噪声影响出现波动。提出一种基于特征噪声加权的特征权重改进算法,该算法通过分析噪声特征的分布特点,对不能准确表达文档真实意思的特征噪声进行加权,降低特征噪声对IDF的影响,最终有效地提高算法的精度和健壮性。  相似文献   

12.
少样本图像分类旨在从有限的标注数据中学习分类器. 尽管现有方法已取得显著进展, 但由于训练样本有限、类内差异过大、类间差异过小, 支持样本与查询样本容易发生混淆, 导致现有方法在提取有用特征和准确区分图像类别方面仍面临挑战. 为了解决这些问题, 我们设计了一种新的多元嵌入增强网络. 该网络轻量且高效, 通过生成一组特征嵌入来表示图像, 而非仅依赖单一的图像级特征. 它能够生成多种层析结构, 从而学习更丰富的特征表示, 减小类内差异并扩大类间差异. 此外, 我们提出了一种基于集合的度量方法, 并结合动态自适应加权机制, 用于衡量查询集和支持集之间的相似度. 实验结果表明, 在miniImageNet、tieredImageNet和CUB数据集上, 模型表现优异. 在使用ResNet-12网络的1-shot设置下, 准确率分别达到了72.22%、75.43%和85.02%, 相较于基准模型分别提升了1.09%、2.93%和1.47%.  相似文献   

13.
特征权重计算是文本分类过程的基础,传统基于概率的特征权重算法,往往只对词频,逆文档频和逆类频等进行统计,忽略了类别之间的相互关系。而对于多分类问题,类别之间的关系对统计又有重要意义。因此,针对这一不足,本文提出了基于类别方差的特征权重算法,通过计算类别文档频率的方差来度量类别之间的联系,并在搜狗新闻数据集上对五种特征权重算法进行分类实验。结果表明,与其他四种特征权重算法相比,本文提出的算法在F1宏平均和F1微平均上都有较大的提高,提升了文本分类的效果。  相似文献   

14.
由于朴素贝叶斯算法的特征独立性假设以及传统TFIDF加权算法仅仅考虑了特征在整个训练集的分布情况,忽略了特征与类别和文档之间关系,造成传统方法赋予特征的权重并不能代表其准确性.针对以上问题,提出了二维信息增益加权的朴素贝叶斯分类算法,进一步考虑到了特征的二维信息增益即特征类别信息增益和特征文档信息增益对分类效果的影响,并设计实验与传统的加权朴素贝叶斯算法相比,该算法在查准率、召回率、F1值指标性能上能提升6%左右.  相似文献   

15.
基于特征向量的SAR图像目标识别方法研究   总被引:1,自引:0,他引:1  
用于描述区域特征的Hu矩不变量在模式识别中得到广泛使用。然而在噪声影响下,尤其是SAR图像中严重的相干斑噪声,Hu 矩不变量不再保持其完美的性能。以Hu七个矩不变量为基础,结合SAR图像的特点,引入四个仿射矩不变量和SAR图像中目标区域的峰值、均值和方差系数,构成SAR图像中目标识别的特征向量。该特征向量体现了SAR图像区域目标的形状特征和区域的灰度信息。通过对两种不同分辨率下的T72坦克SAR图像的目标识别仿真实验,均获得了较好的目标识别效果,说明所选取的SAR图像目标识别的特征向量是有效的,具有较强的目标识别性能。  相似文献   

16.
针对被跟踪目标运动、纹理或环境变化时, 采用基于压缩感知目标跟踪算法目标易漂移、丢失的问题, 提出了改进的压缩感知目标跟踪算法。通过压缩感知算法提取灰度和纹理特征, 计算特征对样本分类结果并更新特征的权值, 使用加权过的特征寻找目标在下一帧的位置。对不同视频的测试结果表明, 提出的算法在目标运动、纹理或环境变化的情况下跟踪准确, 在目标大小80×120像素时平均帧速为25 fps。与传统的压缩感知跟踪算法和其他跟踪算法相比, 所提出的算法在目标运动、纹理或环境变化时能快速准确地获取跟踪目标, 并具有更强的鲁棒性。  相似文献   

17.
采用向量空间模型(vector space model,VSM)表示网页文本,通过在CHI(Chi-Square)特征选择算法中引入频度、集中度、分散度、位置信息这四个特征因子,并考虑词长和位置特征因子改进TF-IDF权重计算公式,提出了PCHI-PTFIDF(promoted CHI-promoted TF-IDF)算法用于中文文本分类。改进算法能降维得到分类能力更强的特征项集、更精确地反映特征项的权重分布情况。结果显示,与使用传统CHI和传统TF-IDF的文本分类算法相比,PCHI-PTFIDF算法的宏F1值平均提高了10%。  相似文献   

18.
利用计算机视觉技术智能分析处于任务中的人的专注度问题。通过对人脸图像视频和对应脑电信号的采集和分析处理,建立连续的面部图片对应脑电信息的样本库,提出一种在脑电信息监督面部图片专注度的前提下,使用人的面部信息分析其专注度的方法。根据在多分布样本下训练的支持向量机分类器的识别结果,面部信息与其专注度确实存在相关关系,所以利用人脸图片分析任务中人的专注度是可行性的,并为后续的状态分析提供客观数据。  相似文献   

19.
基于类别信息的特征权重计算方法对特征与类别的关系表达不够准确,即对于类别频率相同的特征无法比较其对类别的区分能力,因此要考虑特征在类内的分布情况。将特征的反类别频率(inverse category frequency,ICF)和类内熵(entropy)相结合引入到特征权重计算方案中,构造了两种有监督特征权重计算方案。在维吾尔文文本分类语料上进行的实验结果表明,该方法能够明显改善样本的空间分布状态并提高维吾尔文文本分类的微平均◢F◣▼1▽值。  相似文献   

20.
面对海量数据的管理和分析,文本自动分类技术必不可少。特征权重计算是文本分类过程的基础,一个好的特征权重算法能够明显提升文本分类的性能。本文对比了多种不同的特征权重算法,并针对前人算法的不足,提出了基于文档类密度的特征权重算法(tf-idcd)。该算法不仅包括传统的词频度量,还提出了一个新的概念,文档类密度,它通过计算类内包含特征的文档数和类内总文档数的比值来度量。最后,本文在两个中文常见数据集上对五种算法进行实验对比。实验结果显示,本文提出的算法相比较其他特征权重算法在F1宏平均和F1微平均上都有较大的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号