首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work aims at establishing the effect of stress and temperature on the velocity of ultrasonic longitudinal waves in typical engineering polymers, and evaluating the potential of ultrasonic stress measurement in the evaluation of residual stresses in polymer parts. In order to estimate the effect of material morphology, two amorphous and two semicrystalline polymers have been considered. A series of tests are implemented, to determine the acoustoelastic constants and temperature constant of materials, by using the designed transducer fixtures for in situ measurement of longitudinal wave velocity. As expected, the velocity changes linearly with stress and temperature, and the temperature effect is as important as the acoustoelastic effect. It shows that this kind of nondestructive method is a valuable quantitative tool to estimate the residual stress in polymer products, but the material temperature influence must be considered during the estimation.  相似文献   

2.
焊缝匹配影响焊接残余应力的研究   总被引:3,自引:0,他引:3  
林德超  史耀武 《材料工程》1999,(6):24-26,29
采用有限元法对相同温度场的焊缝与母材强度和线膨胀系数匹配影响焊接残余和的规律进行了数值模拟,计算结果表明:等强度等匹配的焊缝区纵向残余应力水平高达母材的屈服强度,  相似文献   

3.
使用压痕法对两副对接试板进行了表面焊接残余应力测试,并通过焊接有限元仿真获得了对接试板焊接残余应力分布规律,对比分析了表面残余应力实测和数值模拟结果。分析结果表明,焊接残余应力数值仿真结果和压痕法实测结果趋势一致,数值相差不大,残余拉应力峰值实测为599 MPa,仿真结果为597 MPa,表明数值模拟方法可预测焊接残余应力;焊缝及热影响区最大纵向残余应力属于拉应力,而最大横向残余应力为压应力,横向残余应力峰值低于纵向残余应力峰值;等效应力(Mises应力)峰值792 MPa,高于试板材料在常温下的初始屈服强度,表明该材料具有明显的加工硬化现象。  相似文献   

4.
目的 研究大厚度奥氏体不锈钢筒体填丝激光焊接,优化结构设计和工艺设计。方法 建立大厚度奥氏体不锈钢筒体填丝激光焊接数值分析模型,通过数值模拟的方法,定量分析大厚度奥氏体不锈钢筒体焊接变形和应力。结果 零件下部38 mm厚焊缝位置处的最大径向收缩量为1.2 mm;零件下部60 mm厚焊缝位置处的最大径向收缩量为2.0 mm;零件中部60 mm厚焊缝位置处的最大径向收缩量为1.9 mm;零件上部60 mm厚焊缝位置处的最大径向收缩量为1.8 mm。填丝激光焊接轴向收缩量为0.55 mm。焊接残余应力最大值在450 MPa左右,应力主要分布在焊缝附近。热处理后,焊接残余应力都有明显降低,最大残余应力从450 MPa左右降低到200 MPa左右,焊接残余应力范围存在一定程度减小;焊接残余变形变化较小,热处理后某些位置的变形略微有所增大。结论 模拟结果表明,大厚度奥氏体不锈钢筒体填丝激光焊接变形和应力在可接受范围内,焊后热处理对释放残余应力有重要作用。  相似文献   

5.
Fusion welding is a joining process widely used in the industry. However, undesired residual stresses are produced once the welding process is completed. Post-weld heat-treatment (PWHT) is extensively employed in order to relieve the welding residual stresses. In this study, effect of PWHT time and temperature on the residual stresses of a ferritic stainless steel is investigated. Residual stress distributions in eight welded specimens were measured by using an ultrasonic method. Ultrasonic stress measurement is a nondestructive method based on acoustoelasticity law, which correlates mechanical stresses with velocity of an ultrasonic wave propagating within the subject material. The ultrasonic wave employed could be longitudinal or shear wave produced by the longitudinal (normal) or transverse (shear) transducers, respectively. Ultrasonic stress measurements based on longitudinal waves use longitudinal critically refracted (LCR) waves in this direction, while shear wave methods use an ultrasonic birefringence phenomenon. The results show that the effect of PWHT can be successfully inferred by both longitudinal and shear wave methods, but the former is found to be more sensitive to stress variation. Furthermore, the distribution of subsurface residual stresses is found to be more distinguishable when the LCR method is employed.  相似文献   

6.
微型光栅结构薄膜中由于残余应力的存在引起器件在光学和机械性能方面发生显著变化.有限元仿真和分析结果表明,膜内的残余拉应力越大,越利于提高和改善器件工作过程中的光学效率.然而,残余拉应力的增加将显著增大结构工作时的驱动电压,使驱动电路的设计与制作更加复杂;同时,还将导致结构的最大工作位移明显减小,极大限制了光栅的应用领域.另外,残余拉应力的增加也会使结构的共振频率变大,从而影响器件的工作带宽.因此,为了使光栅的使用和工作性能满足设计指标要求,在设计当中就要充分并折中考虑残余应力对各个性能参数的影响.并且在随后的加工和制作过程中对其进行严格控制.  相似文献   

7.
采用爆炸焊接方法制备超级奥氏体不锈钢904L-14Cr1MoR复合钢板,需对起爆点等未复合区进行耐蚀堆焊。针对904L-14Cr1MoR复合钢板的焊接特点,选用了ENi Cr Mo-3作为基层和复层的过滤层、E385为盖面层焊接材料,并采用相应技术措施进行耐蚀堆焊,焊后对焊接试板进行了组织观察和性能检测。试验结果表明,904L-14Cr1MoR复合钢板耐蚀堆焊层焊缝及其热影响区的各项性能均满足相关标准和产品技术协议的指标要求。  相似文献   

8.
基于ANSYS有限元分析软件,采用三维移动热源,对TC4钛合金激光焊接残余应力和变形进行了数值模拟和实验研究.结果表明:钛合金激光焊接产生很大的纵向残余应力,而横向残余应力较小.激光焊接线能量增加时,纵向残余应力拉伸区域变宽,峰值应力降低;而横向残余应力随线能量的增加而升高.在临界焊透规范以上焊接时,随焊接线能量的增大,角变形随之而减小,而横向收缩变形增大.焊件被完全穿透时,线能量对角变形的影响作用降低.钛合金激光焊接变形和残余应力实验结果与数值计算结果吻合性较好.通过焊缝金相实验分析了焊接残余应力和变形与线能量的内在关系.  相似文献   

9.
Abstract: Experimental, finite element analysis and statistical studies of residual stresses in edge welded type 316H stainless steel beams are presented. The experimental stress measurements were previously performed by different laboratories using neutron and synchrotron X‐ray diffraction. An analytical model to describe the magnitude and distribution of the residual stresses is presented. Results from finite element analyses are also provided. It is found that there is general agreement between the trends in the residual stresses derived from analysis and measurement. However, the scatter in results is substantial and a statistical framework for treating residual stresses using Bayesian statistics based on experimental and simulation results is described. The Bayesian analytical approach that uses the analytical model as a reference permits the model to be applied to circumstances outside the experimental conditions.  相似文献   

10.
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the  相似文献   

11.
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of p  相似文献   

12.
从焊接残余应力产生机理入手,找出焊接变形的影响因素,通过数值分析推导焊接变形过程中残余应力产生的数学模型,用有限元模拟和试验方法检验模型并找出最优焊接方法.  相似文献   

13.
There exist no materials and/or structures of technical importance without residual stresses. The residual stress management concept has gained importance in industrial applications aiming to improve service performance and useful life of the product. Thus, the industry requests rapid, reliable, and nondestructive methods to determine residual stress state. The aim of this article is to investigate the applicability of the Magnetic Barkhausen Noise (MBN) method to measurement of surface residual stresses in the carburized steels. To comprehend the differences in the surface residual stress state, 19CrNi5H steel samples were carburized at 900°C for 8 and 13 hours, and then, tempered in the range of 180°C and 600°C. The MBN measurement results were correlated with those obtained by the X-ray diffraction (XRD) measurements. Microstructural investigations and hardness measurements were also conducted. For this particular study, it was concluded that both techniques give similar qualitative results for monitoring of the residual stress variations in the carburized and tempered steels. Since the MBN method is much faster than the XRD method, from the industrial point of view it is a very strong candidate for qualitative monitoring of residual stress variations. With an appropriate pre-calibration by considering the effect of microstructure, the MBN method may give reliable quantitative results for residual stress.  相似文献   

14.
The use of welding to permanently join plates is common in industry due to its high efficiency. But welding creates thermal stresses, which can lead to residual stresses and physical distortion. This phenomenon directly influences the buckling stiffness of the welded structure. The welding distortion not only makes difficult the erection of the project, but also influences the final quality and cost of production. In this research, the thermo-elastic-plastic conditions were simulated by a three-dimensional (3D) finite element model (FE). Mechanical and thermal properties of the material were applied to the model, leading to eigenvalue analysis of the thermal and longitudinal stress distribution, buckling during welding and global. The research was performed on thin plates welded by butt joints and T-joints. A birth and death method depending on time was also used to model the molten pool. Since welding is a thermo-mechanical process, a coupling method was used to obtain results for nonlinear transient thermal analysis and introduce them in the structure analysis in order to investigate the buckling phenomenon. A comparison of our numerical results with those obtained from our experiments showed that the models can help predict when and where local buckling can occur. This method can also help predict the heat distribution and deformation during and after welding.  相似文献   

15.
采用有限元数值模拟的方法研究AgCuTi钎焊紫铜/Al_2O_3陶瓷/不锈钢复合结构的形变和残余应力分布情况,并对模拟结果进行实验验证。结果表明:残余应力主要分布在接头区,并且该区形变较小。陶瓷端的残余应力对接头性能影响较大,由于线膨胀系数差异过大,不锈钢陶瓷侧易产生裂纹缺陷,接头倾向于在该区域断裂,紫铜侧陶瓷端TiO反应层的形成导致该区域裂纹的出现,降低了接头的性能。研究各应力分量对最终残余应力的贡献,结果显示环向应力和轴向应力在陶瓷端所产生的拉应力是造成接头强度降低的主要因素。接头拉剪实验表明,接头主要在靠近不锈钢侧的陶瓷端断裂,验证了模拟结果的准确性。  相似文献   

16.
Residual stress after welding has negative effects on the service life of welded steel components or structures. This work reviews three most commonly used methods for predicting residual stress, namely, empirical, semi-empirical and process simulation methods. Basic principles adopted by these methods are introduced. The features and limitations of each method are discussed as well. The empirical method is the most practical but its accuracy relies heavily on experiments. Mechanical theories are employed in the semi-empirical method, while other aspects, such as temperature variation and phase transformation, are simply ignored. The process simulation method has been widely used due to its capability of handling with large and complex components. To improve its accuracy and efficiency, several improvements need to be done for each simulation aspect of this method.  相似文献   

17.
分别采用真空和大气等离子体喷涂工艺在GH3128镍基高温合金基材表面制备CoNiCrAlY结合层和氧化钇部分稳定的氧化锆陶瓷层组成热障涂层。采用有限元模拟计算了涂层的残余应力, 研究了基材预热对打底层与陶瓷层界面应力分布的影响规律。结果表明, 预热基材可以显著地降低陶瓷顶层内部产生的残余拉应力。采用钻孔法测量了涂层中的残余应力并与模拟结果作定量比较, 结果表明: 有限元模拟计算结果与实验测量结果能较好吻合。  相似文献   

18.
目的 定量研究裂纹扩展导致的焊接残余应力重分布效应,得到残余应力随裂纹扩展的变化规律。方法 首先采用盲孔法测试了Q355钢板对接接头的初始残余应力;其次利用线切割技术模拟了平行以及垂直于焊缝的裂纹扩展情况,并测试了裂纹扩展导致的残余应力变化量;最后根据测试数据提出了残余应力释放量Δσ与裂纹长度a之间的函数关系式,进一步得到了基于裂纹扩展的应力重分布计算公式。结果 Q355钢板对接焊的焊缝区纵向(沿焊缝方向)存在较大的残余拉应力,拉应力峰值出现在焊趾处,为屈服强度的1.13倍。焊缝区横向存在梯度较大、拉压交替变化的残余应力,压应力峰值出现在焊趾处,大小为52.6 MPa,拉应力峰值出现在距焊缝中心线17 mm处,大小为63.5 MPa。裂纹扩展能显著释放残余拉应力:裂纹沿焊缝中心扩展,横向残余拉应力峰值降低了45.8%;裂纹沿垂直于焊缝方向扩展,焊趾处的拉应力峰值降低了63.3%。结论 裂纹扩展会显著影响焊接构件的残余应力分布,根据实测数据提出的裂纹扩展应力重分布计算公式能够较好地反映残余应力重分布情况。  相似文献   

19.
贾翠玲  陈芙蓉 《材料导报》2018,32(16):2816-2821
为了探究超声冲击处理(UIT)对铝合金材料焊接应力的影响,采用有限元分析软件AQAQUS建立了7A52铝合金双丝熔化极隋性气体保护焊(MIG)焊接模型和超声冲击处理耦合模型,得到了冲击后的应力场,分析了冲击前后残余应力分布特点;通过改变冲击针移动速度、冲击位置以及冲击针直径,分析其对焊接应力的影响规律,旨在探讨超声冲击处理对铝合金焊接应力改善的影响规律。计算结果表明,超声冲击处理能够显著改善焊缝和热影响区的焊接残余应力,且超声冲击处理对焊趾处的冲击比对焊缝处冲击产生的压应力数值大、范围宽;随着冲击移动速度的增加,焊接接头处压应力值逐渐减小,且移动速度增加到一定程度将会出现欠处理状态,达不到产生压应力的效果;冲击针直径对焊后残余应力影响较大,随着冲击针直径的增大,其接头处压应力值会增加,且产生的纵向残余压应力区间会增大;经过超声冲击处理后的试验和数值计算表明,材料模型中是否考虑应变率对应力结果影响很大,应该根据实际材料的应变率硬化程度建立准确的材料模型。  相似文献   

20.
采用商用ANSYS14.5软件, 依据复合梁增层力学模型, 采用逐道逐层累积模型模拟了C/C复合材料表面等离子喷涂ZrC基涂层沉积残余应力的特征, 分析了SiC过渡层、第二相(SiC, MoSi2)和涂层厚度对ZrC基涂层残余应力的影响, 并进行了实验验证。结果表明, SiC过渡层有效缓解了涂层与基体的热失配应力。涂层体系的应力随着涂层厚度的增加逐渐减小, 符合应力松弛和叠加规律。在涂层内部的径向应力以拉应力为主, 基体中主要为压应力, 且在界面边缘存在压应力集中的极限区域, 易使涂层产生裂纹并沿界面扩展。该模拟采用逐道逐层累积的方法更逼近实际喷涂过程, 能更准确预测涂层的残余应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号