首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
该研究采用CFD方法,对不同结构、不同形状的疏齿密封的流场和泄漏量的影响因素进行了研究。计算了疏齿密封内汽流的压力分布以及速度分布,分析了汽流在最后一个密封齿处达到临界速度的条件。分别讨论了疏齿密封入口压力,密封齿顶间隙,密封齿腔室长度,密封齿厚度以及密封齿形状对汽流流场和泄漏量的影响,并且指出交错齿迷宫密封和带有凸肩的密封具有较好的密封效果。论述了汽轮机组等旋转设备应如何选择密封参数。  相似文献   

2.
贾文聪 《润滑与密封》2018,43(8):126-131
以某型号高速动车组传动齿轮箱大齿轮电机端的迷宫密封结构为研究对象,运用Fluent建立带有扩散空腔的迷宫密封二维轴对称有旋流动模型,对迷宫密封泄漏量进行模拟仿真,指出现有结构存在密封间隙略大、齿顶角度较大、空腔深度较浅的不足。采用Design-expert 8.0软件设计仿真方案,通过分析密封间隙、齿形角度、密封齿数、密封空腔深度及传动轴转速对迷宫密封泄漏量的影响,得到一组使泄漏量最低的最优参数。结果表明:单因素对迷宫密封泄漏量影响的强弱顺序依次为密封间隙、空腔深度、齿数、角度,转速对泄漏量几乎没有影响;交互作用影响因素中,密封间隙和空腔深度对泄漏量影响大于密封间隙和齿数。通过重新建模仿真验证了利用Design-Expert 8.0软件设计迷宫密封泄漏量仿真试验方案和进行迷宫密封参数优化是可行的。  相似文献   

3.
针对某单级高速离心鼓风机轴端迷宫密封碰磨失效的问题,基于工程实际迷宫密封齿磨损图样,建立了迷宫密封齿弯曲磨损失效模型,提出了"齿顶凹槽"迷宫密封防碰磨结构设计方法。采用实验校核的定常求解三维Reynolds-Averaged Navier-Stokes(RANS)方程的数值方法,研究了密封齿弯曲磨损和"齿顶凹槽"防碰磨结构对迷宫密封泄漏特性的影响规律。计算分析了4种弯曲磨损系数B=0,0.1,0.2,0.3,4种凹槽径向深度H/s=0.5,1.0,1.5,2.0和5种凹槽轴向宽度L/s=2.2,2.5,3.0,3.5,4.0的迷宫密封的泄漏量、密封腔流场结构,获得了迷宫密封碰磨失效的判断依据和"齿顶凹槽"防碰磨结构的优化参数。结果表明:鼓风机变工况时,迷宫密封泄漏量随进口压力的增大而线性增大;相同运行工况下,密封泄漏量随密封齿弯曲磨损程度的增大而显著增大;当密封齿磨损量达到B≥1.0时,密封泄漏量达到了设计值的2倍,无法满足机组运行对轴端封严的要求,即发生了密封磨损失效;齿顶凹槽防碰磨结构设计不仅能适应转子的径向振动和轴向窜动,在一定程度上避免迷宫密封磨损失效,还可以减小密封泄漏量(约10%),提高密封的性能。  相似文献   

4.
针对某高速列车齿轮箱迷宫密封的润滑油泄漏问题,基于ANSA软件建立齿轮箱及迷宫密封结构的有限元模型,并采用FLUENT软件对其进行多相流瞬态仿真分析,研究迷宫密封结构的相对啮合深度、节流齿厚、径向间隙、回油孔直径及个数、齿与台阶距离、齿宽、密封间隙对润滑油泄漏量的影响。结果表明:当相对啮合深度大于0.5时,润滑油泄漏量与相对啮合深度呈负相关;润滑油泄漏量与节流齿厚、回油孔直径、回油孔数量呈负相关;润滑油泄漏量与径向间隙、齿宽、齿与台阶距离、密封间隙呈正相关。根据研究结果对迷宫密封结构进行改进,改进后的迷宫密封结构润滑油泄漏量降低为原始泄漏量的3.6%。  相似文献   

5.
以某型号矿用排水泵入口段口环密封为研究对象,采用数值仿真方法,研究排水泵迷宫密封内部流动特征,分析迷宫密封结构尺寸与形状对其泄漏量的影响。结果表明:迷宫的间隙尺寸对密封性能的影响最大,间隙宽度和节流齿宽度的变化将导致泄漏量的大幅变化;相比直齿结构迷宫密封,异形齿结构有利于湍流充分发展,从而可以提高密封性能;通过分析复杂迷宫密封的内部流场,得到适用于排水泵的优化的迷宫密封结构。  相似文献   

6.
针对目前主要以单侧齿、单一变量变化研究迷宫密封泄漏量所存在的不足,本文以多变量函数理论为基础,以双侧齿迷宫空腔结构多参数变化对迷宫密封性能影响为研究对象,对双齿侧、双变量变化的迷宫密封泄漏量进行研究。通过对迷宫密封流场中三角形齿和矩形齿的深宽比、密封间隙、齿数等参数变化的模拟研究表明,本文所提出的方法与原计算方法相比,计算精度高3%5%。  相似文献   

7.
为了分析某风电齿轮箱内迷宫密封各参数对泄漏量的影响,利用数值模拟和构建代理模型对迷宫密封的泄漏行为开展了研究。首先,根据风电齿轮箱三维实体模型构建了其迷宫密封三维流场模型;然后,基于FLUENT软件,通过单一变量法研究了迷宫密封泄漏量随进出口压力比、润滑液动力黏度、高速轴与低速轴的转速和迷宫密封的密封齿间隙的变化规律;最后,构建了径向基神经网络(RBF)代理模型,在该代理模型的基础上,在影响迷宫密封性能的因素中,选取了密封间隙、密封腔体高度和密封腔体宽度三个结构参数作为设计变量,以迷宫密封的最小泄漏量和出口最大速度为优化目标,使用非劣分层遗传算法(NSGA-Ⅱ)获得了最优解。研究结果表明:迷宫密封泄漏量受两个转轴的转速影响很小;泄漏量与进出口压力比、密封间隙成正比,而与润滑油动力黏度成反比;求得最优解对应的参数所对应泄漏量减小了47%,出口最大速度降低了36%,数值模拟与优化理论计算结果一致。该结果可为研究迷宫密封泄漏量的影响特性提供理论依据。  相似文献   

8.
迷宫密封流场与泄漏特性研究   总被引:5,自引:0,他引:5  
应用Fluent软件计算迷宫间隙、齿厚、空腔深度和不同齿型对迷宫密封流场和泄漏量的影响。计算结果表明:迷宫密封泄漏量随间隙宽度呈线性变化;随着密封齿厚度的增加,泄漏量相对减少,泄漏量按线性关系变化;对于空腔深度而言,空腔深度越大,紊流程度下降,泄漏量越大;对不同齿型,半圆形密封齿泄漏量最大,其次是弧形齿,在实际应用中应多使用直齿,梯形齿和三角齿,以减少泄漏量。本研究可为迷宫密封设计与应用提供依据。  相似文献   

9.
运用Fluent模拟仿真技术及经验对比,对影响迷宫密封性能的主要参数:空腔形状、数量、间隔和密封间隙进行分析研究,找出对迷宫密封的影响规律及其优化。得出:在不同形状的空腔结构对比下,一定深宽比下的矩形齿具有与半圆齿形一样好的密封性;任一空腔尺寸下都存在一个最优的空腔数量,在保证泄漏量下空腔利用率最高,而且随着空腔尺寸的增加,最佳空腔数量有减少趋势;随着密封间隙的增大,泄漏量逐渐增大;空腔间隔在一定压强与密封间隙下存在最优值。得出在进出口压比为3,间隙为0.2 mm,齿厚为0.2 mm时迷宫密封效果最好。  相似文献   

10.
为提高压气机级间气路封严密封性能,在传统六边形蜂窝的基础上,改变其结构得到方形蜂窝和圆形蜂窝,数值研究不同间隙、压比和转速下蜂窝结构对篦齿-蜂窝密封封严性能的影响。结果表明:间隙增加时,篦齿密封、六边形蜂窝密封、方形蜂窝密封、圆形蜂窝密封4种密封方式泄漏量均线性增加,但由于蜂窝破坏了流场透气效应,故篦齿-蜂窝密封泄漏量增速最慢,其中圆形蜂窝密封封严效果最好;压比增加时,4种密封方式泄漏量均增加,但篦齿及蜂窝腔室内形成漩涡亦随压比增加而愈发强烈,耗散更多能量,故泄漏量增速逐渐变缓;转子转速增加时,流体环向速度增加,4种密封方式泄漏量均减小,而蜂窝环向切割流体形成漩涡耗散能量,故篦齿-蜂窝密封减小幅度较大。在大间隙高压比高转速的工况下,篦齿-蜂窝衬套结构封严效果更好,其中篦齿-圆形蜂窝密封最具优势。  相似文献   

11.
孙丹  周敏  赵欢  王平  杜宸宇 《润滑与密封》2021,46(3):130-136
为研究非金属热塑性材料的迷宫密封齿变形对密封性能的影响,建立考虑齿变形的迷宫密封泄漏特性瞬态流固耦合数值求解模型,在验证数值求解模型准确性的基础上,分析不同进出口压比下,酚酞聚芳醚酮(PEKC)、聚醚醚酮(PEEK)、聚醚砜酮(PPESKca30)3种材料的迷宫密封力学特性及泄漏特性。研究结果表明:考虑齿变形的密封流场中最后一节齿顶处的压力要低于其相同工况下未考虑齿变形的流体压力,而速度则恰好相反;在不同进出口压比下,密封齿受到气流力作用发生变形,密封径向间隙增大,导致泄漏量增加了6.6%~30%;当进出口压比相同时,材料的弹性模量越大,密封齿变形越小,封严性能越好;研究的3种材料中,PPESKca30的变形量最小,密封泄漏量最少;密封件最大变形量均出现在齿顶位置,且从其齿顶位置向齿根方向逐渐减小;密封件等效应力的最大值均分布在齿根位置,且从其齿顶位置向齿根方向逐渐增大。  相似文献   

12.
基于FLUENT的迷宫密封机理研究   总被引:1,自引:0,他引:1  
林丽  刘卫华 《中国机械工程》2007,18(18):2183-2186
针对影响迷宫密封泄漏特性的三个因素:间隙宽度、齿型夹角以及空腔深宽比,计算了不同结构的内部流场,探讨了各因素对泄漏特性的影响,分析了密封机理。结果表明:迷宫密封的泄漏量随间隙的增大而增大,并得到满足泄漏量条件的最大间隙宽度cmax≈0.57mm;在一定深宽比下,存在最佳齿型角度,随着压比的增加,最佳齿型角度的影响加大;空腔深度和空腔宽度之间存在最佳匹配关系,且空腔深宽比不随间隙宽度的变化而变化。  相似文献   

13.
以F级燃气轮机高压迷宫密封为研究对象,研究密封间隙、压比、密封齿厚对迷宫密封泄漏特性的影响规律,采用泄漏系数表征各种影响因素与密封泄漏量的函数关系。结果表明:相同压比条件下,密封间隙增大,泄漏系数增大,且增大的趋势变大;相同密封间隙下,随着压比提高,泄漏系数近似线性的增大;相同间隙和压比下,随着齿厚的减小,泄漏系数减小。  相似文献   

14.
针对影响往复迷宫压缩机密封性能因素,探究迷宫密封泄漏量与影响因素之间的关系。本文结合FLUENT软件中的动网格技术和正交试验法,对影响迷宫密封泄漏量的关键参数进行对比分析[1,2],从而获得该模型的最优方案,通过模拟仿真和理论计算验证其正确性。结果表明:迷宫密封参数对泄漏量的影响程度的大小顺序为:密封间隙、进出口压比、空腔深度、活塞速度,该模型的最优方案为间隙0.3mm、进出口压比3、空腔深度1.0mm、活塞速度5m/s。  相似文献   

15.
为了降低迷宫密封的泄漏量,提出一种在直通型迷宫密封的密封齿前端和后端设立凹槽的密封结构,基于CFD方法,建立迷宫密封数值仿真模型。通过与已有试验数据的对比,验证模型的正确性。探讨不同湍流模型的适用范围,并对比光滑表面、前置凹槽、后置凹槽3种结构在泄漏量、轴向压降及流场速度分布的差异性。结果表明:SST湍流模型更加适用于迷宫密封这种窄间隙的近壁面流动;前置凹槽结构降低泄漏量的效果较差,只有在高压力差下才能降低泄漏量;后置凹槽结构能改变迷宫密封腔内漩涡方向及状态,进而降低迷宫密封透气效应,加剧密封的能量耗散的同时降低泄漏量。因此,后置凹槽的迷宫密封结构具有较好的工程应用前景。  相似文献   

16.
迷宫式涡旋齿和无迷宫涡旋齿切向密封性能对比   总被引:4,自引:1,他引:3  
针对涡旋压缩机涡旋齿切向密封难以实现的难题,提出一种迷宫式涡旋齿结构.给出无迷宫涡旋齿切向泄漏量的算法和迷宫式涡旋齿切向泄漏量的算法.计算和实测了新旧结构在相邻压缩腔压差不同的条件下的切向泄漏量.对比研究表明,给出的两种结构的泄漏量的算法正确,无迷宫涡旋齿结构的切向泄漏量和迷宫式涡旋齿结构的切向泄漏量均随着相邻压缩腔压差的增大而增大,但迷宫式涡旋齿结构的切向泄漏量与无迷宫涡旋齿结构的切向泄漏量的比例基本恒定,约为46.3%,说明迷宫式涡旋齿结构在相邻压缩腔压差不同的条件下的切向密封性能稳定,并且优于无迷宫涡旋齿结构的切向密封性能.  相似文献   

17.
对汽轮机上侧齿汽封和梳齿汽封进行建模,基于数值求解方法,用有限体积法对控制方程进行离散,并求解湍流模型的封闭方程组,在不同的进口压力下,分析了侧齿汽封和梳齿汽封的三维流动特性。分析结果表明侧齿汽封并不一定优于梳齿汽封,对于高低齿形式的汽封,梳齿汽封的密封性能较好,泄漏量较少,对于平齿形式的汽封,侧齿汽封的密封性能较好,泄漏量较少,转子的凸台对汽封泄漏量的影响很大。为汽封齿的设计加工提供了理论依据,为汽轮机的汽封改造提供了技术参考。  相似文献   

18.
张雨  张开林  姚远 《润滑与密封》2016,41(12):16-20
对高速动车组齿轮箱径向密封的几何结构进行分析,利用Fluent软件仿真计算径向迷宫密封的内部流场和泄漏量,研究径向迷宫的密封机制,分析密封齿相对啮合深度(啮合深度与齿高的比值)对密封性能的影响,对比研究不同密封齿结构下迷宫泄漏量的变化规律。研究结果表明:当相对齿啮合深度为0.1~0.6时,随着啮合深度的增加,迷宫透气效应增强,泄漏率增加,相对齿啮合深度为0.6时存在流体介质高速通道,密封性能最差,而相对啮合深度为0.1时径向迷宫的密封性能最佳;径向迷宫的密封性能随着密封齿夹角和齿顶长度的增大而减弱,工程应用中可以通过减小密封齿夹角和齿顶长度进行齿形锐化,密封齿存在最小夹角。  相似文献   

19.
采用计算流体动力学软件、RNG k-ε模型、Simple算法和结构化网格,研究不同间隙、压比、转速等工况下密封表面凹槽结构对凹槽迷宫密封三维流场和泄漏流动特性的影响。结果表明:凹槽迷宫密封的凹槽结构可以更加充分地耗散气体的动能,从而有效地阻滞气体流动,减小气体的泄漏;迷宫密封的泄漏量随间隙的增大而增大,但凹槽迷宫密封泄漏量和泄漏量增加率都小于普通迷宫密封;随着压比的增大,凹槽迷宫密封的泄漏量有所增加,但相比于普通迷宫密封,其泄漏量增加的趋势在逐渐减小;随着转速的增加,凹槽迷宫密封更容易在凹槽内形成气旋效应,从而使其封严性能显著提高。  相似文献   

20.
对高速动车组齿轮箱径向密封的几何结构进行分析,利用Fluent软件仿真计算径向迷宫密封的内部流场和泄漏量,研究径向迷宫的密封机制,分析密封齿相对啮合深度(啮合深度与齿高的比值)对密封性能的影响,对比研究不同密封齿结构下迷宫泄漏量的变化规律。研究结果表明:当相对齿啮合深度为0.1~0.6时,随着啮合深度的增加,迷宫透气效应增强,泄漏率增加,相对齿啮合深度为0.6时存在流体介质高速通道,密封性能最差,而相对啮合深度为0.1时径向迷宫的密封性能最佳;径向迷宫的密封性能随着密封齿夹角和齿顶长度的增大而减弱,工程应用中可以通过减小密封齿夹角和齿顶长度进行齿形锐化,密封齿存在最小夹角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号