首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper suggests an approach to evaluate the material properties of the nugget zone in resistance spot-welded DP980 steel joints at various strain rates ranging from 0.001 to 100?s?1. Two kinds of micro-specimens are prepared for the tests: one cut from the centre of the welded nugget zone; and the other cut at 1?mm away from the welded nugget centre. Test results show that the welded nugget zone has little discrepancy in the material properties depending on sampling location and that the flow stress of the nugget zone is relatively high compared with that of the base metal at each strain rate tested. It is confirmed from microscopic observation that the differences are mainly caused by the formation of coarse martensite phase in the welded nugget zone due to the rapid cooling after the resistance spot-welding process.  相似文献   

2.
Abstract

Lap joints of dual phase steel sheets of 1·0 mm were prepared by adhesive bonding, spot welding and weld bonding processes using a one component epoxy base structural adhesive. Mechanical properties of the joints were evaluated by tensile shear and fatigue tests. The size of the weld nugget for both spot weld and weld bond was measured for different welding parameters (current, time) and compared. For identical welding parameters, weld bonded nuggets exhibit higher nugget diameter. Tensile shear strength of weld bonded joints is 40 and 58% higher than spot welded joints and 15 and 39% higher than adhesive bonded joints and for DP590 and DP780 steels respectively. Considering 106 cycles, the endurance limit of weld bonded joint is much higher than spot welded joint but smaller than adhesive bonded joints. Overall the performance of weld bonded joints is superior to those of resistance spot welding.  相似文献   

3.
Cross tension tests of resistance spot welded joints with varying nugget diameter were carried out using 980 MPa high strength steel sheet of 1.6 mm thickness. In proportion, as nugget diameter increased from 3√t to 5√t (where t is thickness), cross tension strength (CTS) increased while fracture morphology simultaneously transferred from interface fracture to full plug fracture. In cases of interface fracture, circumferential crack initiation due to separation of the corona bond arose at an early stage of loading. The crack opening process without propagation was recognized until just before fracture and then the crack propagated to the nugget immediately in a brittle manner around CTS. In full plug fracture, main ductile crack initiation from the notch-like part at the end of sheet separation occurred with the sub-crack initiated at an early stage. The ductile crack propagated toward the HAZ and base material to form full plug fracture. The mode I stress intensity factor was considered as a suitable fracture parameter because the circumferential crack behaved pre-crack for brittle fracture in the nugget region at the final stage. Based on the FE analysis, the mode I stress intensity factor was calculated as 116 MPa √m at CTS as fracture toughness for the nugget. With respect to full plug fracture, ductile crack initiation behaviour from the notch-like part was expressed by concentration of equivalent plastic strain. On the assumption that the ductile crack arose in critical value of equivalent plastic strain, the value was calculated as 0.34 by FE analysis. Reasonable interpretation for interface fracture and full plug fracture in the resistance spot welded joint was proposed due to first crack initiation by stress concentration, brittle fracture by using mode I stress intensity factor, and ductile crack initiation by using equivalent plastic strain.  相似文献   

4.
在WQ960高强钢GMAW焊接过程中施加机械振动,焊接过程中通过改变焊接电流、振动频率和振动振幅实现随焊随振.为了确定高强钢振动焊接的最佳工艺参数,引入正交试验方法,对各个参数下的焊接接头的微观组织、拉伸性能和冲击性能进行分析,确定最佳参数,并探究振动参数和焊接参数共同作用下高强钢焊接接头的组织性能演变规律及机理.结果表明,最佳振动焊接工艺参数为:焊接电流220 A,振动频率50 Hz,振动振幅0.5 mm;此时焊接接头的力学性能分别为:抗拉强度为875 MPa,冲击吸收功为70 J.这是因为振动可以细化晶粒,减少先共析铁素体的析出,进而使焊接接头的力学性能提高.  相似文献   

5.
Abstract

A new laser welding process with the local cooling was presented and applied to two automotive dual phase steels, DP780 and DP980. The microstructure, microhardness, tensile properties of welded joints and limiting dome height (LDH) of welded blanks were investigated. It is observed that the local cooling during laser welding process can greatly reduce the martensite tempering and thus reduce the heat affected zone softening. The laser welded joints with the local cooling all failed at the base metal, and exhibit the comparable strength and ductility with the base metal. For the welded blanks with the local cooling, LDH is increased significantly, and failure initiates from the weld and propagates perpendicular to the weld.  相似文献   

6.
In order to achieve high joint strength in resistance spot welding of ultrahigh-strength steel, the effect of adding a ‘pulsed current pattern’ consisting of a combination of short cool time and short-time high-current post-heating was investigated. Finite element analysis (FEA) for post-heating patterns and experimental evaluation for joint strength were conducted using 980 N mm?2 grade steel sheets. FEA shows that the short-time high-current post-heating leads to rapid heating in the nugget and heat-affected zone (HAZ) compared to a conventional temper pattern sheet interface higher than the centre of the nugget. The pulsed current pattern utilizes the effect of this high-current post-heating to properly reheat the nugget and HAZ, which prevents brittle fracture through the nugget without remelting it, even in a short cool time of eight cycles. The experimental results show that the pulsed current pattern improves the failure mode from partial plug failure to plug failure and increases cross tension strength (CTS). The pulsed current pattern does not decrease the hardness of the nugget and results in retention of sufficient tensile shear strength (TSS), while the softened nugget by the conventional temper pattern causes lowering of TSS. A wider proper current range with high CTS over 10 kN and plug failure can be obtained in pulsed current pattern than in the conventional temper pattern.  相似文献   

7.
采用搅拌摩擦焊对铝镁钪合金热轧板和冷轧-退火板进行焊接。测定焊接接头的硬度分布和拉伸力学性能,采用金相和透射电子显微技术分析焊缝区显微组织特征和力学性能的关系。结果表明,热轧板和冷轧-退火板搅拌摩擦焊焊接系数高达92%;焊接接头上焊核区硬度最低、拉伸断口位于焊核区;焊核区在热循环作用下发生部分再结晶导致的亚结构强化的减弱以及Al3(Sc,Zr)粒子共格强化作用的消失是搅拌摩擦焊焊核区强度下降的主要原因。  相似文献   

8.
The results of investigations of the effect of the pulsed welding process on the structure and mechanical properties of welded joints in low-alloy steels are presented. It is shown that the pulsed welding conditions improve the homogeneity of the structure and reduce the grain size of the metal of the welded joint and the heat-affected zone (HAZ). Changes in the structure increase the ductility of the welded joint.  相似文献   

9.
热处理工艺对TRIP980钢板点焊性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
魏世同  陆善平 《焊接学报》2017,38(8):111-114
采用不同焊接工艺对TRIP980钢板进行点焊试验,研究了焊接电流、焊前预热及焊后热处理工艺对点焊性能的影响. 结果表明,随着焊接电流的增大,焊点的熔核直径和拉剪力均增大,但当电流过大而发生飞溅时,焊点的熔核直径和拉剪力开始减小. 焊前预热工艺可提高点焊飞溅电流,进而可以获得更大的熔核直径及拉剪力. 在对焊点进行焊后热处理的情况下,当焊接电流与焊后热处理电流之间的冷却时间超过900 ms时,可显著改善熔核组织,降低熔核硬度,提高焊点拉剪力.  相似文献   

10.
焊接接头焊趾处的等离子喷涂层可改善焊缝截面形状变化,降低该处的应力集中,提高焊接结构的疲劳强度。采用1Crl8Ni9Ti不锈钢十字接头焊态和喷涂处理试样分别进行疲劳对比试验,并对试验结果进行统计分析。疲劳试验结果表明,等离子喷涂后1Crl8Ni9Ti接头疲劳性能明显改善。焊态试件的疲劳强度为169.8MPa,火焰喷涂试件为186.2MPa,等离子喷涂试件为213.8MPa,与焊态试件相比,等离子喷涂试件的疲劳强度提高25.9%,火焰喷涂试件提高9.7%。等离子喷涂试件的疲劳寿命是焊态试件的1.58~9.62倍,火焰喷涂试件的疲劳寿命是焊态的1.55~1.97倍。  相似文献   

11.
罗超  张锦华  王琰  刘海玲  李希勇 《焊接》2021,(2):57-61,64
为了研究板厚对不锈钢激光叠焊接头抗剪强度和疲劳强度的影响,该文针对0.8 mm+2 mm和2 mm+2 mm2种不同板厚搭配的不锈钢激光叠焊接头分别进行了拉伸试验和疲劳试验。结果表明,2 mm+2 mm接头的抗剪强度和疲劳强度均高于0.8 mm+2 mm接头。失效分析发现,2种接头的拉伸破坏由焊肉部位剪断引起的;2种接头的疲劳裂纹均萌生于2 mm未焊透板,裂纹起始位置在2个焊板之间靠近焊核附近未焊透板的热影响区,裂纹沿着焊核边缘向未焊透板外表面方向扩展,直至穿透未焊透板。对焊接接头部位的有限元受力分析可知,2种接头的应力集中程度的不同是造成它们抗剪强度和疲劳强度差异的主要原因。  相似文献   

12.
A new Al-Zn-Mg-Sc-Zr alloy with low Sc content was welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques. The microstructure and properties of those two welded joints were investigated by property tests and microstructural observations. The results show that the new Al-Zn-Mg-Sc-Zr alloy has desirable welding property. The ultimate tensile strength and welding coefficient of the TIG joint reach 405 MPa and 76.7%, respectively, and in FSW joint those property values reach 490 MPa and 92.6%, respectively. The studied base metal has a deformed fibrous subgrains structure, many nano-scaled Al3(Sc,Zr) particles, and very fine aging precipitates. In the TIG joint, the fusion zone consists of coarsened dendritic grains and the heat-affected zone (HAZ) has fibrous micro-scaled subgrains. The FSW welded joint is characterized by a weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. Due to plastic deformation around the rotating pin and anti-recrystallized effectiveness of Al3(Sc,Zr) particles, the weld nugget zone has a very fine subgrain structure. The TMAZ experiences some dissolution of aging precipitates. Coarsening of aging precipitates was observed in the HAZ. The better mechanical properties of the FSW joint are derived from a fine subgrain structure and homogeneous chemical compositions.  相似文献   

13.
采用浸泡试验、极化曲线以及电化学阻抗测试,对2219高强铝合金母材和焊接接头在3.5%NaCl溶液中的腐蚀性能进行研究。浸泡后试样的显微形貌表明,试样中铜元素的分布及存在形态与其腐蚀性能密切相关;极化曲线表明,在电化学腐蚀过程中,搅拌摩擦焊接头的腐蚀电流最小,电子束焊接接头次之,而钨极氩弧焊接头的腐蚀电流最大;电化学阻抗测试表明,腐蚀过程中体系阻抗值由大到小顺序为搅拌摩擦焊的接头,电子束焊的接头,母材,钨极氩弧焊的接头。  相似文献   

14.
陆雪冬  岑越  王欢  吴铭方 《焊接技术》2012,41(4):8-11,1
采用单一CO2气体保护焊,在不同的焊接工艺参数发冷却条件下,对船用AH36钢板的焊接接头力学性能进行了研究.试验结果表明,无论是自然冷却或在焊缝背面进行雾化水冷,接头力学性能均良好;当冷却条件相同时,焊缝层数增加,利于提高焊缝区的冲击韧性;在焊接工艺参数不变的条件下,焊缝背面进行雾化水冷,利于细化晶粒,提高焊缝的冲击韧性及抗拉强度,但是,过高的冷却速度导致接头的脆性增大.  相似文献   

15.
This paper reveals the influences of pulsed current parameters, namely peak current, base current, pulse frequency and pulse-on time, on the mechanical and metallurgical properties of gas tungsten arc welded AZ31B magnesium alloys. Twenty joints were fabricated using different levels of peak current, base current, pulse frequency and pulse-on time. The tensile properties of the welded joints were evaluated and correlated with the weld zone’s microstructure and hardness. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to evaluate the metallurgical characteristics of the welded joints. The joints fabricated using a peak current of 210 A, base current of 80 A, pulse frequency of 6 Hz and pulse on time of 50 % yielded tensile properties superior to the other joints. The formation of fine grains in the weld region, higher fusion zone hardness and uniformly distributed precipitates are the main reasons for the superior tensile properties of these joints.  相似文献   

16.
Microstructural evolution and strain hardening behavior of a friction stir welded(FSWed) high-strength7075Al-T651 alloy were evaluated.The nugget zone was observed to consist of fine and equiaxed recrystallized grains with a low dislocation density and free of original precipitates,but containing uniformly distributed dispersoids.The strength,joint efficiency,and ductility of the FSWed joints increased with increasing welding speed.A joint efficiency of *91% was achieved at a welding speed of 400 mm/min and rotational rate of 800 r/min,while the ductility remained basically the same as that of the base metal.There was no obvious strain rate sensitivity observed in both base metal and welded joints.While both the base metal and FSWed joints exhibited stage III and IV hardening characteristics,the hardening capacity,strain hardening exponent,and strain hardening rate all increased after friction stir welding.  相似文献   

17.
This paper reveals the influences of pulsed current parameters, namely peak current, base current, pulse frequency and pulse-on time, on the mechanical and metallurgical properties of gas tungsten arc welded AZ31B magnesium alloys. Twenty joints were fabricated using different levels of peak current, base current, pulse frequency and pulse-on time. The tensile properties of the welded joints were evaluated and correlated with the weld zone’s microstructure and hardness. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to evaluate the metallurgical characteristics of the welded joints. The joints fabricated using a peak current of 210 A, base current of 80 A, pulse frequency of 6 Hz and pulse on time of 50 % yielded tensile properties superior to the other joints. The formation of fine grains in the weld region, higher fusion zone hardness and uniformly distributed precipitates are the main reasons for the superior tensile properties of these joints.  相似文献   

18.
The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.  相似文献   

19.
先进高强钢电阻点焊接头的断裂模式分析与预测   总被引:1,自引:1,他引:0       下载免费PDF全文
孔谅  刘思源  王敏 《焊接学报》2020,41(1):12-17
研究了先进高强钢(advanced high strength steel, AHSS)两层板电阻点焊接头的断裂模式,不同的断裂模式会影响点焊接头断裂时的机理、力学性能及断裂位置,基于不同组合下的临界熔核尺寸、最大载荷、断口宏观形貌、初始断裂位置、宏观金相组织以及微观硬度曲线等试验结果,阐明了板材厚度和板材强度两类因素对于断裂模式的影响规律. 结果表明,板材强度因素会直接影响断裂模式、初始断裂位置以及最大载荷;板材厚度因素影响断裂模式但不改变初始断裂位置及最大载荷. 临界熔核尺寸的影响因素有板材厚度、板材强度、熔核中缺陷以及拔出断裂位置距熔合线的距离. 在此基础上,文中提出了临界熔核尺寸(DCR)的预测模型及预测方法,该方法与试验值符合较好,为实际工业应用中的临界熔核尺寸判定提供了理论依据.  相似文献   

20.
Abstract

Effects of welding current on macromorphologies, microstructures and mechanical properties of nano-SiC particles strengthening activating flux tungsten inert gas welded AZ31 magnesium alloy joints were investigated by scanning electron microscope and energy dispersive X-ray spectrometer observations and microhardness and tensile tests. The results showed that SiC particles mainly dwelled in the centre and bottom zone of welding pool. Moreover, with the welding current increasing, the mechanical properties of the welding joints were improved by the increased SiC particles in welding pool, the depth/width ratios of weld pool and the refined α-Mg grain size. However, the α-Mg grains coarsened and the mechanical properties of joints decreased due to excessive heat input in welding process when welding current over 115?A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号