首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The influence of threaded and wear simulated (half thread) tools on the mechanical properties of dissimilar Al alloy friction stir spot welds is investigated. With lower tool rotational speed settings, the failure loads of Al 5754/Al 6111 lap joints made using a threaded tool were clearly higher than that of a half thread tool. However, the failure load of the joints made using a half thread tool increased when the tool rotational speed increased, and finally, as the rotational speed was further increased, the failure load became almost the same as the failure load of joints made using a threaded tool. In Al 5052/Al 6061 butt joints made using the threaded and half thread tools, the area of the stir zone on the bonded cross-section corresponded with the actual bonded region on the fracture surface. Therefore, the thread on the rotating pin has limited influence on the mechanical properties of the friction stir spot lap joints.  相似文献   

2.
Ultrafine-grained (UFG) 2024 aluminium alloy prepared by the equal channel angular pressing was friction stir welded (FSW). The high cycle fatigue and crack growth behaviour of the FSW joint were investigated in air and NaCl solution, respectively. This study demonstrated that FSW was a viable technique for joining UFG materials. The UFG microstructure was retained in the nugget zone (NZ). Compared with the UFG base metal (BM), FSW joint exhibited lower ultimate tensile strength and hardness, and the minimum hardness value was located in the heat affected zone (HAZ). NaCl solution significantly reduced the fatigue strength of FSW joint. Fatigue crack propagation rates in the NZ and HAZ were slower than that in the BM in the whole fatigue life.  相似文献   

3.
铝合金回填式搅拌摩擦点焊组织及力学性能分析   总被引:6,自引:5,他引:1       下载免费PDF全文
采用回填式搅拌摩擦点焊技术对7075-T6铝合金进行了点焊试验.对接头进行了显微组织、显微硬度、剪切和十字形拉伸测试.结果表明,接头显微组织可分为焊核区、热力影响区、热影响区及母材;在焊缝中发现了钩状缺陷、孔洞、未焊合、未完全回填及粘连韧带等缺陷;焊缝区显微硬度呈W形分布,焊点中心呈V形分布;在旋转频率为1 400 r/min,焊接时间为4s时,接头的抗剪强度达到最大值125.6 MPa,为母材强度的39.6%;接头的十字形拉伸载荷随工艺参数的变化规律比较复杂,最大十字形拉伸强度可达43.9 MPa.  相似文献   

4.
Abstract

In this study, the influence of welding parameters, including tool rotational speed, plunge rate and dwell time, on the overlap tensile shear properties of AZ31 friction stir spot welds was investigated. The microstructures in stir zones and fracture surfaces were observed using optical microscope and scanning electron microscope respectively. The bonded width and h value (the distance from the tip of the partially bonded region to the top of the weld surface) were measured. The results indicated that larger bonded width and higher h value of the AZ31 weld result in better mechanical property. It is proposed that high tensile shear loads are produced when the tool rotational speed range of 1500–2250 rev min?1 and 1 s dwell time are applied during the friction stir spot welding of AZ31. The plunge rate range from 2·5 to 10 mm s?1 has insignificant influence on the tensile shear load of AZ31 joints under the present conditions. The failure mode changes from interfacial to pullout when the tool rotational speed is >2250 rev min?1. The fracture feature of AZ31 welds is brittle fracture.  相似文献   

5.
2219-T87铝合金搅拌摩擦焊接头组织与力学性能   总被引:4,自引:4,他引:4       下载免费PDF全文
采用搅拌摩擦焊方法对8mm厚2219-T87铝合金进行了焊接.对接头的宏观形貌、微观组织、显微硬度及断口形貌进行了分析.结果表明,焊核区为细小的等轴晶粒,晶粒尺寸远小于母材;热机影响区发生了弯曲变形;热影响区组织出现了明显粗化.前进边热机影响区和焊核区形成明显分界线,后退边相对模糊.搅拌摩擦焊对接头各区域沉淀相分布形态有重要影响.接头室温拉伸强度可以达到母材的70%以上.沿焊缝横截面的显微硬度的分布显示,硬度最低点位于后退侧热影响区区域,断裂位置位于后退侧热影响区处,接头的断裂形式为韧性断裂.  相似文献   

6.
6061-T6铝合金的静止轴肩搅拌摩擦焊工艺及组织性能   总被引:1,自引:5,他引:1       下载免费PDF全文
申浩  杨新岐  李冬晓  崔雷 《焊接学报》2016,37(5):119-123
采用自主研制的静止轴肩搅拌摩擦焊工具系统成功获得了6061-T6铝合金的对接接头. 对该接头的焊缝成形、显微组织、硬度分布以及拉伸性能分别进行了试验研究. 结果表明,SSFSW工艺所得6061-T6铝合金接头具有非常美观的焊缝成形,与常规的FSW工艺相比,几乎没有出现焊缝减薄的现象;焊缝组织分区也有明显的不同,TMAZ非常窄,只有几百微米;接头的硬度呈"W"形分布;在转速1 000 r/min,焊速为200 mm/min时,接头的抗拉强度和断后伸长率达到最大,分别为母材的71.5%和44.6%;拉伸试样均断裂在热影响区,它是接头发生断裂的最薄弱区域.  相似文献   

7.
In this study for the first time, the effects of decrease in heat inflow to the weld metal in friction stir process by utilising semisolid processing and decreasing the pin rotational speed as well as increasing the pin transverse speed were examined. As a result, the characteristic loss of hardness and strength in the weld zone were eliminated. The results showed that by approaching the ultrafine microstructure in the weld zone through the hybrid FSW/SSW process, the hardness and elongation values reached to 90?Hv and 8.88%, respectively. These are only slightly different from those of the base metal of the welded samples. Furthermore, the ultimate tensile strength of the samples welded by the hybrid technique was found to be about 167?MPa that was higher than those of the samples welded by friction stir welding (151?MPa) and semisolid welding (114?MPa) techniques.  相似文献   

8.
The 2219 aluminum alloy under refilling friction stir welding (RF-FSW) was investigated. The micrographs showed that the bead could be divided into six zones, and the grain size and shape were greatly different in these zones. According to the microstructure analysis, the weld nugget zone and the shoulder stirring zone consisted of equiaxed grains, while the grains in the heat affected zone were seriously coarsened. It was obvious that bending deformation occurred in the thermo-mechanically affected zone. According to the microhardness analysis, the lowest hardness of the weld was at the thermo-mechanically affected zone, and the microhardness increased with the retraction of the stir-pin. The tensile strength and elongation of the bead were 70% and 80% of the base metal, respectively. The tensile strength was slightly different for the stable stage and the retraction stage, while the elongation decreased in the retraction stage. The mechanical properties and microstructure responded to different retraction speed were analyzed, and it showed that the elongation decreased with increasing retraction speed.  相似文献   

9.
Abstract

The effects of pin diameter on the microstructure and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints were investigated using microstructural observations, tensile tests and microhardness tests. The results showed that with an increase in the pin diameter, the height and width of the curved interface in the friction stir spot welded AZ31B magnesium alloy joints increased because of the strong effect of stirring and high temperature obtained when large sized pins were adopted. An increase in the pin diameter led to the coarsening of α-Mg grains in the stir zone, thermomechanical affected zone and heat affected zone because of heat generation, resulting in the decrease in microhardness of stir zone, thermomechanical affected zone and heat affected zone. The tensile shear force of the friction stir spot welded AZ31B magnesium alloy joints increased with the increase in pin diameter because the height and width of the curved interface dominated the failure of the specimens.  相似文献   

10.
In this work, a new heating tool friction stir spot welding (HT-FSSW) process was developed, and its impacts on the microstructure and mechanical properties of the welded AZ31 magnesium alloy joints were investigated by microstructure observation, tensile tests and microhardness tests. An increase in the heating tool temperature resulted in a decrease in the grain size of the stir zone (SZ) and an increase in the grain size of the thermomechanically affected zone (TMAZ). The rising heating tool temperature also aggrandised the bonded zone width and enhanced the tensile shear load strength per unit area of the HT-FSSW welded joints. With an increase in the heating tool temperature, the microhardness of SZ increased while that of the TMAZ decreased. Moreover, the slope of the Hall–Petch relationship between microhardness and grain size of the TMAZ is larger than that of the SZ.  相似文献   

11.
Zirconium–titanium alloy joints were successfully produced by friction stir welding. Unlike the (α+β) dual phase microstructure in base metal, only the β phase existed in the region in which temperature exceeded the β transient point for the as welded joint. Accordingly, the hardness in these regions exhibited integral decrement and uniform distribution features. The thermal simulation further showed that hardness variation was mainly determined by phase composition. Microstructure development in the nugget zone was mainly governed by continuous dynamic recrystallisation. Satisfactory ultimate tensile strength and elongation equal to the base metal were achieved in the as welded joint. Tensile fracture occurred at the heat affected zone near the retreating side of the joint. The fracture surface of the joint exhibited a mixing feature with quasi-cleavage facets and small dimples.  相似文献   

12.
利用回填式搅拌摩擦点焊(FSSW)技术焊接6016-T4和5182-O异种金属接头,研究其显微组织及力学性能。以剪切拉伸性能为评价指标,得出最优工艺参数是:下压深度1.5 mm,旋转速度2200 r/min,焊接时间2.5 s,平均剪切力2 950 N。疲劳极限载荷F=296 N,疲劳断裂时裂纹起源于上下板搭接处,同时向板厚和板宽方向扩展。接头显微组织中没有铸态的柱状晶,均为等轴晶和较母材晶粒略有长大的组织,接头性能良好。  相似文献   

13.
ABSTRACT

Defect-free joints were produced in 2.0?mm thick 7075-T6 Al alloy by refill friction stir spot welding using a modified tool. Weld performance was evaluated in terms of microstructure, interfacial bonding, hardness, static and fatigue strength based on the experimental observations. The results indicated that grain size, interfacial bonding quality and lap shear strength significantly depend on sleeve penetration depth (SPD), with sufficient interfacial bonding and stable lap shear strength achieved when SPD?≥?1.8?mm. The SPD and applied load played a dominant role in determining the static lap shear and fatigue failure mechanisms, respectively. More precisely, the lap shear failure mode was an interfacial failure when SPD?≤?1.8?mm, and nugget pullout when SPD?≥?2.0?mm. The fatigue fracture mode involved nugget pullout under high applied load, while fracture through the parent sheet occurs under medium and lower applied loads.  相似文献   

14.
Abstract

An Al–Mg–Si alloy was friction stir welded (FSW), and the microstructure of the zigzag line in the welds was investigated using optical microscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy. The effect of the zigzag line on the mechanical properties of the as welded joints was also examined. It was found that in the welds with high heat input, small discontinuous cavities or microcracks of several micrometres in size exist along the zigzag line, and the microcracked zigzag line was found to significantly affect the face bend properties of the FSW joint, but had limited influence on the tensile properties of the butt welds. In joints with low heat input, the zigzag line was only composed of oxide particles, no cavities or microcracks were detected at the zigzag line.  相似文献   

15.
The effect of tool geometry on microstructure and static strength in friction stir spot welds of 6061 aluminium alloy sheets was studied. Tools with three different probe lengths were used to join the aluminium sheet with different tool rotational speeds and tool holding times. The weld microstructures varied significantly depending on probe length, tool rotational speed and tool holding time. Two particular aspects were identified: the thickness of the upper sheet under the shoulder indentation and the nugget size. The former decreased with increasing probe length at the shortest tool holding time and the slowest tool rotational speed, but there were no discernible differences in other welding conditions, while the latter increased with increasing probe length, tool rotational speed and tool holding time. The tensile shear strength increased with increasing probe length, while the cross-tension strength was not affected significantly by probe length. Two fracture modes were observed: shear fracture of the nugget and mixed mode fracture under tensile shear loading, and nugget debonding and pull-out under cross-tension loading. Based on experimental observation of the microstructures, the effect of probe length on static strength and the fracture mechanisms were discussed.  相似文献   

16.
In this study, pinless friction stir spot welding of 1.8 mm thick 2198-T8 aluminium–lithium alloy plates was carried out. The change of the angle between the nugget edge and the surface, and the relationship between this angle and joint mechanical property were analysed. The results show that the angle increases rapidly initially and then approaches 45°, which is due to the extrusion of nugget material and its flow along the surrounding ‘cold’ metal during welding. The tensile strength is determined by the nugget edge angle and hook defect. Tensile loads reach a higher value when the nugget edge angle approaches 45° but have a slight decrease with the hook angle changing from obtuse to acute. The maximum tensile/shear strength could be 8.57 kN at the rotation speed of 1500 rev min??1 and the dwell time of 12 s.  相似文献   

17.
The current study investigates the mechanical and microstructure properties of 2024 aluminium alloy welded by protrusion friction stir spot welding as a novel method to produce keyhole-free welds. Tool rotation speed and anvil protrusion height are used as effective variables of the process to obtain optimum conditions. Results illustrate that the keyhole-free welds with the joint show superior mechanical properties in protrusion friction stir spot welding compared to conventional friction stir spot welding. Failure mode changes from interfacial mode to circumferential mode by increasing the nugget zone depth and joint length, while the effect of nugget zone is considerable. Finally, welding at a rotation speed of 1600?rev?min?1 and a protrusion height of 0.4?mm presents significant mechanical properties with more joint length.  相似文献   

18.
采用交流和直流两种方法对AZ31B镁合金进行了电阻点焊,分析了接头的组织形态。结果显示,焊点熔核中心为细小的等轴晶,结晶后的组织为非平衡凝固产生的远离平衡态的组织,在先共晶α-Mg相上析出β-Mg17Al12离异共晶体;直流点焊中加大电极压力使得焊点热影响区组织形态由等轴晶转换为树枝晶;交流点焊规范的改变不引起焊点组织形态的变化,只是影响析出相的数量。  相似文献   

19.
The interfacial microstructure produced through tool transit of a friction stir welded lap joint between an aluminium alloy and stainless steel was studied by transmission electron microscopy in order to clarify its early stages of formation. Transmission electron microscopy studies of the bottom surface of the exit hole revealed the presence of several mixed layers of an ultrafine intermetallic compound (IMC) and stainless steel. The joining between dissimilar materials was achieved through a continuous flow of the stirred aluminium alloy into the mixed layers and the resultant growth of the ultrafine IMCs due to the heat induced by the friction between the tool and the specimen. The continuous thin reaction layer finally produced at the interface was found to be stronger than the base aluminium alloy.  相似文献   

20.
DP590 steel sheets were joined by friction stir spot welding using polycrystalline cubic boron nitride tool with an objective to produce bond diameters similar to conventional spot welding nuggets. A range of spindle rotation (400–2400 rev min?1) and plunge speeds (0·03–3·8 mm s?1) were exercised to attain defect free welds in 1·6 mm thick sheets. A bond diameter of 4t1/2, alike minimum nugget diameter criteria for resistance spot welds, resulted in superior mechanical properties than conventional spot welds. The heat inputs corresponding to different welding parameters influenced the weld microstructure, including grain size, phases and their morphology. The bond diameter was higher for higher heat inputs. However, low heat input welds with weld time cycles ~4 s produced more refined microstructure and exhibited similar strengths even with reduced bond size. Plug type failure was associated with larger bond diameters (~7·1 mm), while interfacial failure was observed with smaller welds (~5·4 mm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号