首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Information Fusion》2008,9(1):41-55
Ensemble methods for classification and regression have focused a great deal of attention in recent years. They have shown, both theoretically and empirically, that they are able to perform substantially better than single models in a wide range of tasks. We have adapted an ensemble method to the problem of predicting future values of time series using recurrent neural networks (RNNs) as base learners. The improvement is made by combining a large number of RNNs, each of which is generated by training on a different set of examples. This algorithm is based on the boosting algorithm where difficult points of the time series are concentrated on during the learning process however, unlike the original algorithm, we introduce a new parameter for tuning the boosting influence on available examples. We test our boosting algorithm for RNNs on single-step-ahead and multi-step-ahead prediction problems. The results are then compared to other regression methods, including those of different local approaches. The overall results obtained through our ensemble method are more accurate than those obtained through the standard method, backpropagation through time, on these datasets and perform significantly better even when long-range dependencies play an important role.  相似文献   

2.
3.
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MGU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MGU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MGU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically.  相似文献   

4.
Describes a novel neural architecture for learning deterministic context-free grammars, or equivalently, deterministic pushdown automata. The unique feature of the proposed network is that it forms stable state representations during learning-previous work has shown that conventional analog recurrent networks can be inherently unstable in that they cannot retain their state memory for long input strings. The authors have previously introduced the discrete recurrent network architecture for learning finite-state automata. Here they extend this model to include a discrete external stack with discrete symbols. A composite error function is described to handle the different situations encountered in learning. The pseudo-gradient learning method (introduced in previous work) is in turn extended for the minimization of these error functions. Empirical trials validating the effectiveness of the pseudo-gradient learning method are presented, for networks both with and without an external stack. Experimental results show that the new networks are successful in learning some simple pushdown automata, though overfitting and non-convergent learning can also occur. Once learned, the internal representation of the network is provably stable; i.e., it classifies unseen strings of arbitrary length with 100% accuracy.  相似文献   

5.
递归神经网络的结构研究   总被引:8,自引:0,他引:8  
丛爽  戴谊 《计算机应用》2004,24(8):18-20,27
从非线性动态系统的角度出发,对递归动态网络结构及其功能进行详尽的综述。将递归动态网络分为三大类:全局反馈递归网络、前向递归网络和混合型网络。每一类网络又可分为若干种网络。给出了每种网络描述网络特性的结构图,同时还对多种网络进行了功能对比,分析了各种网络的异同。  相似文献   

6.
This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time.  相似文献   

7.
Approaches combining genetic algorithms and neural networks have received a great deal of attention in recent years. As a result, much work has been reported in two major areas of neural network design: training and topology optimisation. This paper focuses on the key issues associated with the problem of pruning a multilayer perceptron using genetic algorithms and simulated annealing. The study presented considers a number of aspects associated with network training that may alter the behaviour of a stochastic topology optimiser. Enhancements are discussed that can improve topology searches. Simulation results for the two mentioned stochastic optimisation methods applied to non-linear system identification are presented and compared with a simple random search.  相似文献   

8.
Goh SL  Mandic DP 《Neural computation》2004,16(12):2699-2713
A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with strong component correlations. In addition, this algorithm is generic and represents a natural extension of the real-valued RTRL. Simulations on benchmark and real-world complex-valued signals support the approach.  相似文献   

9.
On-line learning algorithms for locally recurrent neural networks   总被引:9,自引:0,他引:9  
This paper focuses on online learning procedures for locally recurrent neural nets with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose online version, causal recursive backpropagation (CRBP), has some advantages over other online methods. CRBP includes as particular cases backpropagation (BP), temporal BP, Back-Tsoi algorithm (1991) among others, thereby providing a unifying view on gradient calculation for recurrent nets with local feedback. The only learning method known for locally recurrent nets with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and faster convergence with respect to the Back-Tsoi algorithm. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with CRBP. CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space.  相似文献   

10.
The following learning problem is considered, for continuous-time recurrent neural networks having sigmoidal activation functions. Given a “black box” representing an unknown system, measurements of output derivatives are collected, for a set of randomly generated inputs, and a network is used to approximate the observed behavior. It is shown that the number of inputs needed for reliable generalization (the sample complexity of the learning problem) is upper bounded by an expression that grows polynomially with the dimension of the network and logarithmically with the number of output derivatives being matched.  相似文献   

11.
Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.  相似文献   

12.
Diagonal recurrent neural networks for dynamic systems control   总被引:48,自引:0,他引:48  
A new neural paradigm called diagonal recurrent neural network (DRNN) is presented. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer, and the hidden layer comprises self-recurrent neurons. Two DRNN's are utilized in a control system, one as an identifier called diagonal recurrent neuroidentifier (DRNI) and the other as a controller called diagonal recurrent neurocontroller (DRNC). A controlled plant is identified by the DRNI, which then provides the sensitivity information of the plant to the DRNC. A generalized dynamic backpropagation algorithm (DBP) is developed and used to train both DRNC and DRNI. Due to the recurrence, the DRNN can capture the dynamic behavior of a system. To guarantee convergence and for faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. Convergence theorems for the adaptive backpropagation algorithms are developed for both DRNI and DRNC. The proposed DRNN paradigm is applied to numerical problems and the simulation results are included.  相似文献   

13.
This paper describes the application of artificial neural networks to acoustic-to-phonetic mapping. The experiments described are typical of problems in speech recognition in which the temporal nature of the input sequence is critical. The specific task considered is that of mapping formant contours to the corresponding CVC' syllable. We performed experiments on formant data extracted from the acoustic speech signal spoken at two different tempos (slow and normal) using networks based on the Elman simple recurrent network model. Our results show that the Elman networks used in these experiments were successful in performing the acoustic-to-phonetic mapping from formant contours. Consequently, we demonstrate that relatively simple networks, readily trained using standard backpropagation techniques, are capable of initial and final consonant discrimination and vowel identification for variable speech rates  相似文献   

14.
Rule revision with recurrent neural networks   总被引:2,自引:0,他引:2  
Recurrent neural networks readily process, recognize and generate temporal sequences. By encoding grammatical strings as temporal sequences, recurrent neural networks can be trained to behave like deterministic sequential finite-state automata. Algorithms have been developed for extracting grammatical rules from trained networks. Using a simple method for inserting prior knowledge (or rules) into recurrent neural networks, we show that recurrent neural networks are able to perform rule revision. Rule revision is performed by comparing the inserted rules with the rules in the finite-state automata extracted from trained networks. The results from training a recurrent neural network to recognize a known non-trivial, randomly-generated regular grammar show that not only do the networks preserve correct rules but that they are able to correct through training inserted rules which were initially incorrect (i.e. the rules were not the ones in the randomly generated grammar)  相似文献   

15.
In this paper, a fully connected recurrent neural network (RNN) is presented for the recovery of M-ary pulse amplitude modulated (M-PAM) signals in the presence of intersymbol interference and additive white Gaussian noise. The network makes use of two different activation functions. One is the traditional two-level sigmoid function, which is used at its hidden nodes, and the other is the M-level sigmoid function (MSF), which is used at the output node. The shape of the M-level activation function is controlled by two parameters: the slope and shifting parameters. The effect of these parameters on the learning performance is investigated through extensive simulations. In addition, the network is compared with a linear transversal equalizer, a decision feedback equalizer and a recently proposed RNN equalizer which has used a scaled sigmoid function (SSF) at its output node. Comparisons are made in terms of their learning properties and symbol error rates. It is demonstrated that the proposed RNN equalizer performs better, provided that the MSF parameters are properly selected.  相似文献   

16.
Gradient calculations for dynamic recurrent neural networks: asurvey   总被引:6,自引:0,他引:6  
Surveys learning algorithms for recurrent neural networks with hidden units and puts the various techniques into a common framework. The authors discuss fixed point learning algorithms, namely recurrent backpropagation and deterministic Boltzmann machines, and nonfixed point algorithms, namely backpropagation through time, Elman's history cutoff, and Jordan's output feedback architecture. Forward propagation, an on-line technique that uses adjoint equations, and variations thereof, are also discussed. In many cases, the unified presentation leads to generalizations of various sorts. The author discusses advantages and disadvantages of temporally continuous neural networks in contrast to clocked ones continues with some "tricks of the trade" for training, using, and simulating continuous time and recurrent neural networks. The author presents some simulations, and at the end, addresses issues of computational complexity and learning speed.  相似文献   

17.
A new modular recurrent neural network (MRNN)-based speech-recognition method that can recognize the entire vocabulary of 1280 highly confusable Mandarin syllables is proposed in this paper. The basic idea is to first split the complicated task, in both feature and temporal domains, into several much simpler subtasks involving subsyllable and tone discrimination, and then to use two weighting RNN's to generate several dynamic weighting functions to integrate the subsolutions into a complete solution. The novelty of the proposed method lies mainly in the use of appropriate a priori linguistic knowledge of simple initial-final structures of Mandarin syllables in the architecture design of the MRNN. The resulting MRNN is therefore effective and efficient in discriminating among highly confusable Mandarin syllables. Thus both the time-alignment and scaling problems of the ANN-based approach for large-vocabulary speech-recognition can be addressed. Experimental results show that the proposed method and its extensions, the reverse-time MRNN (Rev-MRNN) and bidirection MRNN (Bi-MRNN), all outperform an advanced HMM method trained with the MCE/GPD algorithm in both recognition-rate and system complexity.  相似文献   

18.
In this paper, the problem of asymptotical stability for static recurrent neural networks is investigated. Based on delay partitioning approach and a new Lyapunov–Krasvoskii functional, delay-independent conditions are proposed to ensure the asymptotic stability of the static recurrent neural networks. The delay-independent conditions are less conservative than the existing ones. Expressed in linear matrix inequalities, the stability conditions can be checked using the standard numerical software. Two numerical examples are provided to illustrate the effectiveness and the reduced conservatism of the proposed results.  相似文献   

19.
This paper is concerned with the state estimation problem for a class of recurrent neural networks with interval time-varying delay, where time delay includes either slow or fast time-varying delay. A novel delay-dependent criterion, in which the rate–range of time delay is also considered, is established to estimate the neuron states through available output measurements such that, for all admissible time delays, the dynamics of the estimation error system is globally asymptotically stable. The proposed method is based on a new Lyapunov–Krasovskii functional with triple-integral terms and free-weighting matrix approach. Numerical examples are given to illustrate the effectiveness of the method.  相似文献   

20.
A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号