首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured meat (i.e., meat produced in vitro using tissue engineering techniques) is being developed as a potentially healthier and more efficient alternative to conventional meat. Life cycle assessment (LCA) research method was used for assessing environmental impacts of large-scale cultured meat production. Cyanobacteria hydrolysate was assumed to be used as the nutrient and energy source for muscle cell growth. The results showed that production of 1000 kg cultured meat requires 26-33 GJ energy, 367-521 m(3) water, 190-230 m(2) land, and emits 1900-2240 kg CO(2)-eq GHG emissions. In comparison to conventionally produced European meat, cultured meat involves approximately 7-45% lower energy use (only poultry has lower energy use), 78-96% lower GHG emissions, 99% lower land use, and 82-96% lower water use depending on the product compared. Despite high uncertainty, it is concluded that the overall environmental impacts of cultured meat production are substantially lower than those of conventionally produced meat.  相似文献   

2.
Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO?, NO(x), SO?, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.  相似文献   

3.
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.  相似文献   

4.
Linkages between household energy technology, indoor air pollution, and greenhouse gas (GHG) emissions have become increasingly important in understanding the local and global environmental and health effects of domestic energy use. We report on GHG emissions from common Kenyan wood and charcoal cookstoves. Our estimations are based on 29 d of measurements under the conditions of actual use in 19 rural Kenyan households. Carbon monoxide (CO), particulate matter (PM10), combustion phase, and fuel mass were measured continuously or in short intervals in day-long monitoring sessions. Emissions of pollutants other than CO and PM10 were estimated using emissions ratios from published literature. We estimated that the daily carbon emissions from charcoal stoves (5202 +/- 2257 g of C: mean +/- SD) were lower than both traditional open fire (5990 +/- 1843 g of C) and improved ceramic woodstoves (5905 +/- 1553 g of C), but the differences were not statistically significant. However, when each pollutant was weighted using a 20-yr global warming potential, charcoal stoves emitted larger amounts of GHGs than either type of woodstove (9850 +/- 4600 g of C for charcoal as compared to 8310 +/- 2400 and 9649 +/- 2207 for open fire and ceramic woodstoves, respectively; differences not statistically significant). Non-CO2 emissions from charcoal stoves were 5549 +/- 2700 g of C in 20-yr CO2 equivalent units, while emissions were 2860 +/- 680 and 4711 +/- 919 for three-stone fires and improved ceramic stoves, respectively, with statistically significant results between charcoal and wood stoves. Therefore in a sustainable fuel-cycle (i.e., excluding CO2), charcoal stoves have larger emissions than woodstoves. When the emissions from charcoal production, measured in a previous study, were included in the assessment, the disparity between the GHG emissions from charcoal and firewood increased significantly, with non-CO2 GHG emissions factors (g of C/kg of fuel burned) for charcoal production and consumption 6-13 times higher than emissions from woodstoves. Policy implications and options for environment and public health are discussed.  相似文献   

5.
Commercial food waste represents a relatively available high-quality feedstock for landfill diversion to biological treatment. A life-cycle assessment was performed for commercial food waste processed through aerobic composting systems of varying complexity, anaerobic digestion, and landfills with and without gas collection and energy recovery, as well as a bioreactor landfill. The functional unit was 1000 kg of food waste plus 550 kg of branches that are used as a bulking agent. For each alternative, global warming potential, NO(x) and SO(2) emissions, and total net energy use were determined. Anaerobic digestion was the most environmentally beneficial treatment option, leading to -395 kg net CO(2)e per functional unit. This result was driven by avoided electricity generation and soil carbon storage from use of the resulting soil amendment. The composting alternatives led to between -148 and -64 kg net CO(2)e, whereas the landfill alternatives led to the emission of -240 to 1100 kg CO(2)e. A traditional landfill with energy recovery was predicted to have lower emissions than any of the composting alternatives when a fertilizer offset was used. There is variation in the results based on uncertainty in the inputs, and the relative rankings of the alternatives are dependent on the soil amendment offset that is used. The use of compost to offset peat has greater emission offsets than the value of compost as a fertilizer.  相似文献   

6.
焊膏印刷是表面组装技术(SMT)工艺流程的第一道工序,控制焊膏印刷质量对电子产品的性能至关重要。从焊膏的性能、模版的质量和精度、印刷设备的性能和精度以及操作流程四个方面具体阐述了如何控制焊膏印刷质量,同时介绍了相关缺陷的解决办法。  相似文献   

7.
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.  相似文献   

8.
Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.  相似文献   

9.
韩满林  彭琛 《丝网印刷》2007,6(11):7-12
随着各制造企业对无铅焊料应用前景的认识以及相关立法的颁布,寻找并选择一种适当的焊膏用于生产成为当前研究的热点问题。从焊膏的主要特性参数入手,总结无铅焊料应满足的要求以及3种主要无铅焊膏合金体系的优缺点,并结合实验效果探讨如何选择适当的焊膏。  相似文献   

10.
Preparing emission inventories is essential to the assessment and management of our environment. In this study, Japanese air pollutant emissions, energy consumption, and CO2 emissions categorized by approximately 400 sectors (as classified by Japanese input-output tables in 1995) were estimated, and the contributions of each sector to the total amounts were analyzed. The air pollutants examined were nitrogen oxides (NOx), sulfur oxides (SOx), and suspended particulate matter (SPM). Consumptions of about 20 fossil fuels and five other fuels were estimated according to sector. Air pollutant emission factors for stationary sources were calculated from the results of a survey on air pollution prevention in Japan. Pollutant emissions from mobile sources were estimated taking into consideration vehicle types, traveling speeds, and distances. This work also counted energy supply and emissions from seven nonfossil fuel sources, including nonthermal electric power, and CO2 emissions from limestone (for example, during cement production). The total energy consumption in 1995 was concluded to be 18.3 EJ, and the annual total emissions of CO2, NOx, SOx, and SPM were, respectively, 343 Mt-C, 3.51 Mt, 1.87 Mt, and 0.32 Mt. An input-output analysis of the emission inventories was used to calculate the amounts of energy consumption and emissions induced in each sector by the economic final demand.  相似文献   

11.
In order to manage strategies to curb climate change, systemic benchmarking at a variety of production scales and methods is needed. This study is the first life cycle assessment (LCA) of a large-scale, vertically integrated organic dairy in the United States. Data collected at Aurora Organic Dairy farms and processing facilities were used to build a LCA model for benchmarking the greenhouse gas (GHG) emissions and energy consumption across the entire milk production system, from organic feed production to post-consumer waste disposal. Energy consumption and greenhouse gas emissions for the entire system (averaged over two years of analysis) were 18.3 MJ per liter of packaged fluid milk and 2.3 kg CO(2 )equiv per liter of packaged fluid milk, respectively. Methane emissions from enteric fermentation and manure management account for 27% of total system GHG emissions. Transportation represents 29% of the total system energy use and 15% of the total GHG emissions. Utilization of renewable energy at the farms, processing plant, and major transport legs could lead to a 16% reduction in system energy use and 6.4% less GHG emissions. Sensitivity and uncertainty analysis reveal that alternative meat coproduct allocation methods can lead to a 2.2% and 7.5% increase in overall system energy and GHG, respectively. Feed inventory data source can influence system energy use by -1% to +10% and GHG emission by -4.6% to +9.2%, and uncertainties in diffuse emission factors contribute -13% to +25% to GHG emission.  相似文献   

12.
论述了无铅锡膏与有铅锡膏的区别及自身的特点,分析了锡膏无铅化对检测技术的影响,并提出了实现无铅化的方法。  相似文献   

13.
Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.  相似文献   

14.
主要讨论了微型元器件诸如0201,01005以下元件,CSP器件等在电子产品组装过程中的焊膏印刷工艺.突出模板的厚度设计、开口外形设计、开口尺寸设计、材料选择以及PCB焊盘设计对微型元器件的要求;通过试验分析出哪种焊膏更适合微型元器件的焊膏印刷;试验证明出微型元器件需要寻求什么样的焊膏印刷工艺过程;总结出电子产品组装过程中运用微型元器件进行焊膏印刷的实际经验.  相似文献   

15.
Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.  相似文献   

16.
The objective of this study was to conduct a life-cycle assessment (LCA) of greenhouse gas (GHG) emissions from a typical nongrazing dairy production system in Eastern Canada. Additionally, as dairying generates both milk and meat, this study assessed several methods of allocating emissions between these coproducts. An LCA was carried out for a simulated farm based on a typical nongrazing dairy production system in Quebec. The LCA was conducted over 6 yr, the typical lifespan of dairy cows in this province. The assessment considered 65 female Holstein calves, of which 60heifers survived to first calving at 27mo of age. These animals were subsequently retained for an average of 2.75 lactations. Progeny were also included in the analysis, with bulls and heifers in excess of replacement requirements finished as grain-fed veal (270kg) at 6.5mo of age. All cattle were housed indoors and fed forages and grains produced on the same farm. Pre-farm gate GHG emissions and removals were quantified using Holos, a whole-farm software model developed by Agriculture and Agri-Food Canada and based on the Intergovernmental Panel for Climate Change Tier 2 and 3methodologies with modifications for Canadian conditions. The LCA yielded a GHG intensity of 0.92kg of CO(2) Eq/kg of fat- and protein-corrected milk yield. Methane (CH(4)) accounted for 56% of total emissions, with 86% originating from enteric fermentation. Nitrous oxide accounted for 40% of total GHG emissions. Lactating cows contributed 64% of total GHG emissions, whereas calves under 12mo contributed 10% and veal calves only 3%. Allocation of GHG emissions between meat and milk were assessed as (1) 100% allocation to milk, (2) economics, (3) dairy versus veal animals, and (4) International Dairy Federation equation using feed energy demand for meat and milk production. Comparing emissions from dairy versus veal calves resulted in 97% of the emissions allocated to milk. The lowest allocation of emissions to milk (78%) was associated with the International Dairy Federation equation. This LCA showed that greatest reductions in GHG emissions would be achieved by applying mitigation strategies to reduce enteric CH(4) from the lactating cow, with minimal reductions being achievable in young stock. Choice of coproduct allocation method can also significantly affect the relative allocation of GHG emissions to milk and meat.  相似文献   

17.
Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.  相似文献   

18.
The Electric Power Research Institute (EPRI) undertook a multiyear effort to understand the landscape of postcombustion CO? capture technologies globally. In this paper we discuss several central issues facing CO? capture involving scale, energy, and overall status of development. We argue that the scale of CO? emissions is sufficiently large to place inherent limits on the types of capture processes that could be deployed broadly. We also discuss the minimum energy usage in terms of a parasitic load on a power plant. Finally, we present summary findings of the landscape of capture technologies using an index of technology readiness levels.  相似文献   

19.
The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO2 emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO2 emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO2 emissions would lead to a 10% reduction in CO2 emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO2 emissions that has been shown in earlier workto stimulate investment in new generation technology also provides significant CO2 reductions before new technology is deployed at large scale.  相似文献   

20.
过去,在金属介质上进行倒装芯片组装时,如何在有凹槽空间的介质上实现焊膏印刷成为一大挑战.主要瓶颈是限流器有限区域内的模腔(深度小于2.0mm).一种做法是印刷焊膏时使用多孔焊膏喷嘴,其带来的问题在于喷嘴堵塞会造成焊膏量不一致.而喷嘴口的多重设计和焊膏尺寸的一致性对于提高焊膏性能至关重要.焊膏印刷技术已经使用多年.然而,传统的二维模版技术主要适用于平面介质.最近,相关模版制造商研发了一种新的模版技术,能够在小于100μm的凹槽上印刷.最新的研发成果是使用3D模版,配合一个专门设计的刮刀,以实现在受力变形的有限空间上良好的印刷效果.本文研究的是采用3D模版在凹槽深300μ m、小于2.0mm区域上实现焊膏印刷的技术,该技术可在有限空间内实现一致的焊膏印刷效果;此外,本文还研究了在间隔400μm、凹槽深150μm的区域上实现焊膏印刷的技术.3D模版可帮助焊膏印刷在凹槽空间内更好地控制焊膏质量.以下几个因素会影响焊膏印刷质量:焊料类型、模版布局、刮刀类型、凹槽形态及深度,此外还包含印刷参数.上述因素的相互作用使得在凹槽上进行连续的焊膏印刷成为可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号