共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical properties and crystallization behavior of poly(lactide)/poly(methyl methacrylate)/silica composites 下载免费PDF全文
Poly(lactide)/poly(methyl methacrylate)/silica (PLA/PMMA/SiO2) composites were fabricated using a twin‐screw extruder. Nanosilica particles were incorporated to improve the toughness of the brittle PLA, and a chain extender reagent (Joncryl ADR 4368S) was used to reduce the hydrolysis of the PLA during fabrication. Highly transparent PLA and PMMA were designated to blend to obtain the miscible and transparent blends. To estimate the performance of the PLA/PMMA/SiO2 composites, a series of measurements was conducted, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and isothermal crystallization behavior determination. A chain extender increases the ultimate tensile strength of the PLA/PMMA/SiO2 composites by ~43%, and both a chain extender and nanosilica particles increase Young's modulus and Izod impact strength of the composites. Including 0.5 wt % nanosilica particles increase the elongation at break and Izod impact strength by ~287 and 163%, respectively, compared with those of the neat PLA. On account of the mechanical performances, the optimal blending ratio may be between PLA/PMMA/SiO2 (90/10) and PLA/PMMA/SiO2 (80/20). The total light transmittance of the PLA/PMMA/SiO2 composites reaches as high as 91%, indicating a high miscible PLA/PMMA blend. The haze value of the PLA/PMMA/SiO2 composites is less than 35%. Incorporating nanosilica particles can increase the crystallization sites and crystallinities of the PLA/PMMA/SiO2 composites with a simultaneous decrease of the spherulite dimension. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42378. 相似文献
2.
Lili Qin Guohua Li Jun Hou Xiaoyan Yu Huili Ding Qingxin Zhang Nongyue Wang Xiongwei Qu 《Polymer Composites》2015,36(9):1675-1684
Poly (methyl methacrylate)/boron nitride (PMMA/BN) composites were prepared by dispersing BN particles into methyl methacrylate monomer phase by bulk polymerization method. BN particles modified with silane coupling agent, γ‐methacryloxypropyl trimethoxy silane, were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Effects of modified BN particle content on thermal conductivity were investigated, and the experimental values were compared with those of theoretical and empirical models. With 16 wt% of BN particles, the thermal conductivity of the composite was 0.53 W/(m·K), 1.8 times higher than that of pure PMMA. The microstructures of the PMMA/BN composites were examined by scanning electron microscopy, energy‐dispersive X‐ray analysis, and transmission electron microscopy. Dynamic mechanical analysis and thermogravimetric analysis traces also corroborated the confinement of the polymer in an inorganic layer by exhibiting an increase in glass‐transition temperatures and weight loss temperatures in the thermogram. Mechanical properties and electrical insulation property of the PMMA/BN composites were also determined. These results showed that PMMA/BN composites may offer new technology and business opportunities. POLYM. COMPOS., 36:1675–1684, 2015. © 2014 Society of Plastics Engineers 相似文献
3.
Omdeo Kishorrao Gohatre Manoranjan Biswal Smita Mohanty Sanjay K Nayak 《Polymer International》2020,69(6):552-563
The present study deals with the development of composite materials utilizing recycled poly(vinyl chloride) (r‐PVC) recovered from waste electrical and electronic materials and waste fly ash obtained from thermal power plants. The effect of the incorporation of fly ash on the mechanical, thermal and morphological properties of the r‐PVC matrix was studied. The primary characterization of r‐PVC and fly ash was done employing FTIR, EDX, particle size analysis and XRD analysis. Subsequently, fly ash with a particle size of approximately 9.29 μm was incorporated within the r‐PVC matrix. Composite sheets were prepared using a melt blending process followed by compression moulding. The mechanical test revealed an increase in the tensile strength and elongation at break of the r‐PVC/fly ash composite up to 30 wt% loading of fly ash beyond which there was a decrease in the tensile strength. The impact strength, however, decreased with increasing fly ash content in the r‐PVC matrix. The morphological properties of the composites showed a good distribution of the filler within the recycled matrix. The thermal properties of r‐PVC also improved with the incorporation of fly ash which was revealed from DSC and TGA studies. The water absorption test showed an increase in water uptake with the addition of fly ash in the r‐PVC matrix. © 2020 Society of Chemical Industry 相似文献
4.
Minekazu Kodama 《Polymer Engineering and Science》1993,33(10):640-644
Dynamic mechanical properties, tensile properties, and scanning electron microscopy of blends of poly(methyl methacrylate) and polycarbonate were investigated after phase separation above their cloud point temperature by annealing in a hot press. The dynamic mechanical properties show that phase separation proceeds more distinctly for the blends annealed at higher temperature and for longer time. The scanning electron micrographs show that the morphology of phase separated blends varies with the conditions of heat treatment. The tensile properties of phase separated blends deteriorate on account of the coarsening of the brittle dispersed phase over the optimum size and the occurrence of voiding during the heat treatment. 相似文献
5.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856. 相似文献
6.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40 and 50 mol % were prepared. The ENRs were later used to prepare thermoplastic vulcanizates (TPVs) by blending them with poly(methyl methacrylate) (PMMA) using various formulations. Dynamic vulcanization, using sulfur as a vulcanizing agent, was performed during the mixing process. The mixing torque increased as the ENR contents and epoxide molar percentage increased. This was because of an increasing chemical interaction between the polar groups of the blend components, particularly at the interface between the elastomeric and thermoplastic phases. The ultimate tensile strength of the TPVs with ENR‐20 was high because of strain‐induced crystallization. ENRs with epoxide levels >30 mol % exhibited an increase of tensile strength because of increasing levels of chemical interaction between the molecules and the different phases. The hardness of the TPVs also increased with increased epoxide levels but decreased with increased contents of ENRs. Two morphology phases with small domains of vulcanized ENR particles dispersed in the PMMA matrix were observed from scanning electron microscopy micrographs. The TPVs based on ENR‐20 and ENR‐50 showed smaller dispersed rubber domains than those of the other types of ENRs. Furthermore, the size of the vulcanized rubber domain decreased with increasing amounts of PMMA in the blends. The decomposition temperature of the TPVs also increased as both the levels of ENRs in the blends and the epoxide molar percentage increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1251–1261, 2005 相似文献
7.
Highly transparent poly(methyl methacrylate) (PMMA) composites have been made by carefully matching the refractive index of the glass fiber reinforcement with the PMMA matrix. Composites containing 10.4 vol% glass fibers and 0.68 mm in thickness had an overall optical transmission of 92%. The transparency of the composites is temperature dependent because of the different temperature coefficients of refractive index for the glass fiber and PMMA. The tensile strength of the composites at room temperature was twice that of pure PMMA and decreased with increasing temperature, as predicted by the rule of mixtures. 相似文献
8.
Synthesis and characterization of poly(methyl methacrylate)/polysiloxane composites and their coating properties 下载免费PDF全文
A series of poly(methyl methacrylate) (PMMA)/polysiloxane composites and their coatings were prepared as designed. A copolymer (PMMAVTEOS) containing methyl methacrylate (MMA) and vinyltriethoxysilane (VTEOS) was prepared by free radical polymerization and then condensed with methyl triethoxysilane (MTES) to fabricate PMMA/polysiloxane composites; their corresponding coatings were obtained via a curing process in an oven (at 75 °C). The polymers were characterized by gel permeation chromatography and Fourier transform infrared spectroscopy. The surface property, hardness, water contact angle, thermal stability, and optical property of the coatings were investigated by scanning electron microscopy, pencil hardness testing, water contact angle testing, thermogravimetric analysis, and ultraviolet–visible spectroscopy, respectively. The results showed that, after addition of MMA, the pencil hardness of the coatings was reduced from 6H to 2H and the thermal stability decreased from 365 to 314 °C. However, it increased the flexibility and adhesion properties (the water contact angle increased from 94.7° to 102.1°). The transparent PMMA/polysiloxane coatings showed excellent scratch resistance, a smooth surface, high thermal stability, and a strong adhesion property. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46358. 相似文献
9.
Investigation of thermal,mechanical and electrochemical properties of nanocomposites based on CuO modified poly(vinyl chloride)/poly(methyl methacrylate) blend 下载免费PDF全文
The preparation of binary polymer blend nanocomposites with different nanomaterials is a relatively new approach to achieve desired physical, thermal, mechanical, and electrochemical properties because it has the collective effects of both polymer blending and fillers. Transition metal oxides constitute a large class among those fillers because the precursors for metal oxides are abundantly available. However, very few studies have been accomplished on incorporating transition metal oxides into binary polymer blends. In this project, cuprous oxide (CuO) nanoparticles (NPs) with a crystallite size of 24.95 nm were incorporated into poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blend, and thin films of the nanocomposites were obtained through a solution casting technique. Scanning electron microscopy, X‐ray diffraction, universal testing machine testing, thermogravimetric analysis, and cyclic voltammetry were used to study morphological, crystalline, mechanical, thermal, and electrochemical properties of the nanocomposites. Scanning electron micrographs showed that the blend was completely miscible and CuO NPs were well dispersed within the matrix. Mechanical properties greatly improved with each wt% addition of CuO NPs. Thermogravimetric analysis thermograms revealed a two‐stage degradation for neat PVC/PMMA blend and CuO/PVC/PMMA. Cyclic voltammetry results indicated a free electron transfer in neat blend that further improved with the incorporation of increasing percentage of CuO NPs. J. VINYL ADDIT. TECHNOL., 23:80–85, 2017. © 2015 Society of Plastics Engineers 相似文献
10.
《应用聚合物科学杂志》2018,135(21)
The effect of graphene oxide (GO) flake size on thermal properties of GO/poly(methyl methacrylate) (GO/PMMA) composites prepared via in situ polymerization was investigated. Two styles of GO sheets were synthesized from different sizes of graphite powders by modified Hummers' method and GO/PMMA composites with GO of different sizes were prepared via in situ polymerization. Transmission electron microscopy verified that GO sheets produced from large graphite powders was obviously larger than that from small graphite powders. The similar number of layers and disorder degree of two types of GO sheets were proved by X‐ray diffraction and Raman, respectively. X‐ray diffraction and scanning electron microscopy results of GO/composites proved the homogenous dispersion of both two types of GO sheets in polymer matrix. Dynamic mechanical analysis and thermogravimetric analysis results showed that large GO sheets exhibit better improvement than small GO sheets in thermal properties of the composites. Compared with neat PMMA, the glass transition temperature and decomposition temperature of the composites with large GO sheets (0.20 wt %) were increased by 15.9 and 25.9 °C, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46290. 相似文献
11.
Lucía Pérez Amaro Serena Coiai Lucia Conzatti Antonella Manariti Francesco Ciardelli Elisa Passaglia 《Polymer International》2013,62(4):554-565
Poly(vinyl chloride) (PVC)/layered double hydroxide (LDH) composites and PVC/poly(methyl methacrylate) (PMMA)/LDH composites were prepared via solution intercalation into PVC using both unmodified and organo‐modified LDHs and variable‐molecular‐weight PMMA as additional components. The LDH dispersion was investigated using X‐ray diffraction analysis and electron microscopy in scanning and transmission modes. Spotlight fourier transform infrared (FTIR) chemical imaging analysis was also used to obtain a deeper insight into the dispersion of polymer phases and LDH segregation. Thermal properties were determined using thermogravimetric analysis and differential scanning calorimetry; moreover, a preliminary investigation of mechanical properties in tensile mode and evaluation of the Vicat softening temperature were carried out. The morphological analysis of PVC/LDH and PVC/PMMA/LDH composites evidenced in both cases the presence of disordered micro‐aggregates with loss of the LDH crystallographic symmetry depending on the amount and molecular weight of PMMA. In particular, in the case of PVC/PMMA/LDH composites, the FTIR imaging analysis showed that PMMA mostly segregated in the LDH phase. However, even if the degree of LDH dispersion was not elevated (micro‐aggregates with disordered structures and size ranging from 0.5 up to 11 µm were evidenced), thermal stability and mechanical properties of the composites were improved with a synergic effect of PMMA and LDH. © 2013 Society of Chemical Industry 相似文献
12.
In this work, glass flake (GF)/epoxy vinyl ester resin composites were fabricated with various compositions and mixing methods. The effect of GF on thermal and mechanical behavior of these composites was investigated using different techniques such as differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and thermogravimetric analysis (TGA). The results showed that the presence of GF in epoxy vinyl ester formulation could obviously affect the cure temperature, reaction enthalpy value, and degradation temperature. DMTA results also exhibited that the tan δ peak area decreased and storage modulus increased with increasing GF content and this effect seemed to be different depending on the initial epoxy vinyl ester compositions. The scanning electron microscopy (SEM) images showed that mixing method had a strong effect on the surface morphology, size, and distribution of glass flake. The effect of mixing method on properties of produced composite was also studied. 相似文献
13.
Modified St/DVE cured materials were formulated with a commercial DVEC (Mn=1015 g/mol) and a synthesized (583 g/mol) DVEL resins and styrene, adding a high molecular weight PMMA as modifier. A thermodynamic analysis of the initial miscibility for the St-PMMA and DVE-PMMA quasibinary systems was realized using the experimental cloud-point curves (CPC), in order to determine the binary interaction parameters. Calculated CPC for the quasiternary St/DVE/PMMA at 25 °C showed that St/DVEL/PMMA is miscible in the whole concentration range, while the St/DVEC/PMMA becomes partially miscible almost at the start of curing reaction (very low conversions). This miscibility behavior originates quite different morphologies in the systems cured at room temperature. Final materials with DVEL showed typical nodular microphase morphologies generated by polymerization induced phase separation (PIPS) mechanism. Materials with DVEC showed typical macrophase morphologies characterized by droplets-like domains, with secondary phase separation inside the droplets and in the mother phase. These morphological structures were directly related to the thermal and mechanical properties of the final systems. The low molecular weight resin generates a thermoset of higher glass transition temperature, bending modulus, and compression yield stress, but lower fracture resistance than the high molecular weight commercial resin. The addition of a thermoplastic modifier allowed to improve the fracture resistance without the unwanted reduction in modulus, which is inevitable when using elastomeric additives. The reason for the existence of an optimum modifier concentration is also discussed. 相似文献
14.
Long‐fiber pellets were made by an in situ pultrusion process. Fiber‐reinforced composites were prepared by an injection‐molding process and an extrusion/injection‐molding method with pellets, respectively. SEM observations showed that the strong interface was maintained during the injection process for low shearing forces, although polymer adhesion to the fiber surface was completely delaminated in the process of extrusion/injection molding for very high shearing forces. Enhanced adhesion of composites promoted substantial improvement of mechanical properties compared to those with poor adhesion. However, the enhanced adhesion between the fiber and the matrix also sacrificed the impact resistance properties. Longer fibers substantially enhanced the properties of composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2478–2483, 2004 相似文献
15.
We have studied the dynamic mechanical behavior of poly(methyl methacrylate) (PMMA)/acidified multiwalled carbon nanotube (MWNT) composites compatibilized with amine-terminated poly(ethylene oxide) (PEO-NH2). PEO-NH2 is ionically associated with acidified MWNTs via ionic interaction as shown by XPS and FTIR. The miscibility between PEO and PMMA improves the interfacial adhesion between polymer matrix and MWNTs, leading to an increase in the storage modulus values of the composites. The effects of PEO-NH2 on storage modulus and glass transition temperature are discussed. 相似文献
16.
Viscoelastic properties, morphology, and thermal stability of rigid and plasticized poly(vinyl chloride)/poly (methyl methacrylate) (PVC/PMMA) blends were studied. For that purpose, blends of variable composition from 0 to 100 wt% were prepared in the presence (15, 30, and 50 wt%) and in the absence of di(2‐ethylhexyl) phthalate as plasticizer. Their miscibility was investigated by using dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The DMTA and SEM results showed that the two polymers are miscible. Thermogravimetric studies on these blends were carried out in a flowing atmosphere of air from ambient temperature to 550°C. The results showed that the thermal degradation of rigid and plasticized PVC/PMMA in this broad range of temperature is a three‐step process and that PMMA exerted a stabilizing effect on the thermal degradation of PVC during the first step by reducing the rate of dehydrochlorination. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers 相似文献
17.
PBT/E-MA-GMA/碳酸钙复合材料的结构与性能研究 总被引:2,自引:0,他引:2
采用2种粒径CaCO3分别与乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯三元共聚物(E-MA-GMA)弹性体并用,制备了PBT/E-MA-GMA/CaCO3复合材料。扫描电镜分析发现纳米CaCO3自身易形成团聚粒子,且有许多E-MA-GMA包覆在纳米CaCO3团聚粒子表面,分散不好。而微米CaCO3与E-MA-GMA倾向于单独分散,分散相尺寸较小。力学性能测试表明,E-MA-GMA与适量微米CaCO3并用具有协同增韧作用。当E-MA-GMA质量分数为10%时,复合材料的缺口冲击强度在微米CaCO3质量分数达到10%左右,出现最大值为46.5kJ/m2,其冲击韧性值接近PBT/E-MA-GMA(质量比85∶15)共混物的冲击韧性值53.9kJ/m2,而大大高于PBT/E-MA-GMA(质量比90∶10)共混物的缺口冲击韧性值18.8kJ/m2。 相似文献
18.
Xiaodong Qian Jing Jin Lingang Lu Gaosong Shao Saihua Jiang 《Journal of Polymer Research》2017,24(3):45
A flame retardants containing phosphorus-silicon, DOPO-VTS, was synthesized and incorporated into polymethyl methacrylate (PMMA) matrix through sol-gel process at different loadings. The results from Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and Differential Scanning Calorimetry (DSC) showed that silicon particle were formed and dispersed well in the PMMA matrix. The addition of DOPO-VTS can not only enhance the flame retardancy of PMMA but also improve the thermal stability of PMMA. When compared to PMMA, the addition of only 15wt% DOPO-VTS results in 28.5% decrease in pHRR. Moreover, 15.0 wt% DOPO-VTS results in 32.0 °C increase in half degradation temperatures (T0.5). The results of Hot Stage Microscopy (HSM) and FTIR showed that phosphorus-containing compound and the silicon crystal were formed in the char layers during the pyrolysis process, and the char layers can effectively prevent the degradation of PMMA/silicon particle composites. It's believed that this research will stimulate further efforts in silicon particle as the based flame retardants in different polymers for the property reinforcements. 相似文献
19.
A poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) (80/20 w/w) polymer blend was studied by mechanical spectroscopy. Two relaxations can be distinguished: in the glassy state, a very large secondary relaxation in the range of 100 K to 325 K which results from the combination of secondary relaxations of PVC and PMMA; and only one main relaxation at 364 K associated to the glass rubber transition. The relaxation spectrum in the range of the β relaxation has been described by a relaxation time distribution function based upon a Gaussian function and a series-parallel model. The α relaxation was studied by means of a theoretical approach for the nonelastic deformation of polymers. We found that the miscibility of this blend appears to be a function of the observation scale: the PVC/PMMA blend is heterogeneous at the scale of molecular movements involved for the β relaxation process but homogeneous at the scale of the chain segments responsible for the α relaxation dynamics. © 1996 John Wiley & Sons, Inc. 相似文献