首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.  相似文献   

2.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

3.
Progress over the past decades in porous materials has exerted great effect on the design of metal‐free carbon electrochemical catalysts in fuel cells. The carbon material must combine three functions, i.e., electrical conductivity for electron transport, optimal pores for ion motion, and abundant heteroatom sites for catalysis. Here, an ideal carbon catalyst is achieved by combining two strategies—the use of a 2D covalent organic framework (COF) and the development of a suitable template to guide the pyrolysis. The COF produces nanosized carbon sheets that combine high conductivity, hierarchical porosity, and abundant heteroatom catalytic edges. The catalysts achieve superior performance to authentic Pt/C with exceptional onset potential (0 V vs ?0.03 V), half‐wave potentials (?0.11 V vs ?0.16 V), high limit current density (7.2 mA cm?2 vs 6.0 mA cm?2), low Tafel slope (110 mV decade?1 vs 121 mV decade?1), long‐time stability, and methanol tolerance. These results reveal a novel material platform based on 2D COFs for designing novel 2D carbon materials.  相似文献   

4.
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailorable compositions, porosities, functionalities, and intrinsic chemical stability. The incorporation of electroactive moieties in the structure transforms COFs into electroactive materials with great potential for energy-related applications. Herein, the recent advances in the design and use of electroactive COFs as capacitors, batteries, conductors, fuel cells, water-splitting, and electrocatalysis are addressed. Their remarkable performance is discussed and compared with other porous materials; hence, perspectives in the development of electroactive COFs are presented.  相似文献   

5.
Controllable modulation of the stacking modes of 2D (two-dimensional) materials can significantly influence their properties and functionalities but remains a formidable synthetic challenge. Here, an effective strategy is proposed to control the layer stacking of imide-linked 2D covalent organic frameworks (COFs) by altering the synthetic methods. Specifically, a modulator-assisted method can afford a COF with rare ABC stacking without the need for any additives, while solvothermal synthesis leads to AA stacking. The variation of interlayer stacking significantly influences their chemical and physical properties, including morphology, porosity, and gas adsorption performance. The resultant COF with ABC stacking shows much higher C2H2 capacity and selectivity over CO2 and C2H4 than the COF with AA stacking, which is not demonstrated in the COF field yet. Furthermore, the outstanding practical separation ability of ABC stacking COF is confirmed by breakthrough experiments of C2H2/CO2 (50/50, v/v) and C2H2/C2H4 (1/99, v/v), which can selectively remove C2H2 with good recyclability. This work provides a new direction to produce COFs with controllable interlayer stacking modes.  相似文献   

6.
Covalent organic frameworks (COFs) have emerged as a fascinating crystalline porous material and are widely used in the field of catalysis. However, developing simple approaches to fabricate conjugated COFs with specific functional groups remains a significant challenge. In this study, the construction of defective COF‐LZU1 with Lewis acid sites embedded into the frameworks is fulfilled by a facile solvent‐assisted ligand exchange method. A monodentate ligand, protocatechualdehyde, is successfully introduced into the skeleton of COF‐LZU1, which endows the defects in the structure of COF‐LZU1 via replacement of the original coordinated benzene‐1,3,5‐tricarbaldehyde ligand. As‐synthesized defective COF‐LZU1 decorated with protocatechualdehyde is rich of free hydroxy groups for chelating with active metal ions. Specifically, after combining with Fe3+, the defective COF‐LZU1 shows excellent activity in catalytic alcoholysis of epoxides under mild conditions. The method reported here will open up the opportunity to incorporate different functional groups into COFs and enrich the strategies for creating new types of porous catalysts.  相似文献   

7.
8.
Benefiting from metal–organic frameworks (MOFs) unique structural characteristics, their versatility in composition and structure has been well explored in electrochemical oxygen evolution reaction (OER) processes. Here, a ligand/ionic exchange phenomenon of MOFs is reported in alkaline solution due to their poor stability, and the active species and reaction mechanism of MOFs are revealed in the OER process. A series of mixed Ni‐MOFs and Fe‐MOFs are synthesized by straightforward sonication and then directly used as catalyst candidates for OER in alkaline electrolyte. It can be confirmed via ex situ transmission electron microscopic images and X‐ray diffraction patterns analysis, that the bimetallic hydroxide (NiFe‐LDH) is generated in 1.0 m KOH in situ and acts as protagonist for oxygen evolution. The optimized catalyst (FN‐2) exhibits a lower overpotential (275 mV at a current density of 10 mA cm?2) and excellent long‐term stability (strong current density for 100 h without fading). The revelation of the real active species of MOF materials may contribute to better understanding of the reaction mechanism.  相似文献   

9.
Electrochemical conversion of carbon dioxide (CO2) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4-Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2RR. For MN4-Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3C1 and Co/CrN2C2 centers are designed. Calculations indicate CoNxCy-Por-COFs exhibit lower limiting potential (−0.76 and -0.60 V) for CO2-to-CO reduction than its parent CoN4-Por-COFs (−0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3OH and CH4. Electronic structure analysis reveals that substituting CoN4 to CoN3C1/CoN2C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3C1/CrN2C2 lowers the limiting potential for CO2-to-HCOOH reduction. This work predicts N-confused Co/CrNxCy-Por-COFs to be high-performance CO2RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.  相似文献   

10.
11.
Achieving high‐performance biocomposites requires knowledge of the compatability between the immobilized enzyme and its host material. The modular nature of covalent organic frameworks (COFs), as a host, allows their pore geometries and chemical functionalities to be fine‐tuned independently, permitting comparative studies between the individual parameters and the performances of the resultant biocomposites. This research demonstrates that dual pores in COFs have profound consequences on the catalytic activity and denaturation of infiltrated enzymes. This approach enforces a constant pore environment by rational building‐block design, which enables it to be unequivocally determined that pore heterogeneity is responsible for rate enhancements of up to threefold per enzyme molecule. More so, the enzyme is more tolerant to detrimental by‐products when occupying the larger pore in a dual‐pore COF compared to a corresponding uniform porous COF. Kinetic studies highlight that pore heterogeneity facilitates mass transfer of both reagents and products. This unparalleled versatility of these materials allows many different aspects to be designed on demand, lending credence to their prospect as next‐generation host materials for various enzyme biocomposites catalysts.  相似文献   

12.
13.
The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid‐phase sorbents to provide enhanced protection. Herein, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groups in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime‐functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF‐TpAb‐AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g?1. These results delineate important synthetic advances toward the implementation of COFs in environmental remediation.  相似文献   

14.
15.
In reticular chemistry, topology is a powerful concept for defining the structures of covalent organic frameworks (COFs). However, due to the lack of diversity in the symmetry and reaction stoichiometry of the monomers, only 5% of the two-dimensional topologies have been reported to be COFs. To overcome the limitations of COF connectivity and pursue novel topologies in COF structures, two aminal-linked COFs, KUF-2 and KUF-3,  are prepared, with dumbbell-shaped secondary building units. Linear dialdehydes and piperazine are condensed at a ratio of 1:2 to construct an aminal linkage, leading to unreported hxl-a ( KUF-2 ) and quasi- hcb ( KUF-3 ) structures. Notably, KUF-3 displays top-tier C2H6/C2H4 selectivity and C2H6 uptake at 298 K, outperforming most porous organic materials. The intrinsic aromatic ring-rich and Lewis basic pore environments, and appropriate pore widths enable the selective adsorption of C2H6, as confirmed by Grand Canonical Monte Carlo simulations. Dynamic breakthrough curves revealed that C2H6 can be selectively separated from a gas mixture of C2H6 and C2H4. This study suggests that topology-based design of aminal-COFs is an effective strategy for expanding the field of reticular chemistry and provides the facile integration of strong Lewis basic sites for selective C2H6/C2H4 separation.  相似文献   

16.
17.
Membrane-based carbon dioxide (CO2) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2/CH4, CO2/H2, CO2/N2, and CO2/He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.  相似文献   

18.
Single atom catalysts (SACs) are receiving increasing interests due to their high theoretical catalytic efficiency and intriguing physiochemical properties. However, most of the synthetic methodologies involve high‐temperature treatment. This usually leads to limited control over the spatial distribution of metal sites and collapse of porous network that result in limited active site exposure. A strategy to construct SAC by using a covalent organic framework as the precursor is reported in this study. The as‐prepared catalyst is mainly composed of standing carbon layers with the presence of edge‐site hosted metal single atoms. Such structure configuration not only allows full site exposure but also endows the metal site with high intrinsic activity. With a trace amount of cobalt loading (0.17 wt%), the nanorice‐shaped catalyst displays promising electrochemical activities toward catalyzing the oxygen reduction reaction in both alkaline and acidic medium. An ultrahigh mass activity of 838 A gCo–1 at 0.9 V is achieved in the acidic electrolyte. This work suggests a new route to design SACs based on covalent organic framework for energy storage and conversion devices.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号