首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal–templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA‐based molecular architectures with unique structural programmability and well‐defined topology.  相似文献   

2.
3.
DNA has been extensively used as a versatile template to assemble inorganic nanoparticles into complex architectures; thanks to its programmability, stability, and long persistence length. But the geometry of self‐assembled nanostructures depends on a complex combination of attractive and repulsive forces that can override the shape of a molecular scaffold. In this report, an approach to increase the morphological stability of DNA‐templated gold nanoparticle (AuNP) groupings against electrostatic interactions is demonstrated by introducing hydrophobicity on the particle surface. Using single nanostructure spectroscopy, the nanometer‐scale distortions of 40 nm diameter AuNP dimers are compared with different hydrophilic, amphiphilic, neutral, and negatively charged surface chemistries, when modifying the local ionic strength. It is observed that, with most ligands, a majority of studied nanostructures deform freely from a stretched geometry to touching particles when increasing the salt concentration while hydrophobicity strongly limits the dimer distortions. Furthermore, an amphiphilic surface chemistry provides DNA‐linked AuNP dimers with a high long‐term stability against internal aggregation.  相似文献   

4.
5.
6.
DNA is a superb molecule for self‐assembly of nanostructures. Often many DNA strands are required for the assembly of one DNA nanostructure. For lowering the cost of synthesizing DNA strands and facilitating the assembly process, it is highly desirable to use a minimal number of unique strands for potential technological applications. Herein, a strategy is reported to assemble a series of DNA microparticles (DNAµPs) from one component DNA strand. As a demonstration of the application of the resulting DNAµPs, the design and assembled DNAµPs are modified to carry additional single‐stranded tails on their surfaces. The modified DNAµPs can either capture other nucleic acids or display CpG motifs to stimulate immune responses.  相似文献   

7.
The development of robust DNA-protein coupling techniques is mandatory for applications of DNA nanostructures in biomedical diagnostics, fundamental biochemistry, and other fields in biomolecular nanosciences. The use of self-labeling fusion proteins, which are orthogonal to biotin-streptavidin and antibody-antigen interactions, is described for the site-selective protein decoration of two exemplary DNA nanostructures: a four-way junction X-tile motif and a 3D DNA tetrahedron. Multifunctional DNA superstructures bearing up to four different proteins are generated and characterized by electrophoresis and microplate-based functionality assays. Steric and electrostatic interactions are identified as critical parameters controlling the efficiency of DNA-protein ligation. The results indicate that this method is versatile and broadly applicable, not only for the functionalization of DNA architectures but also for the site-specific decoration of other molecular materials and devices containing several different proteins.  相似文献   

8.
With the development of structural DNA nanotechnology, DNA has now far exceeded its original function: as a genetic code. It can, in principle, self‐assemble into desired shapes with accurate size. Moreover, it can perform as a functional linker to program other materials by grafting DNA onto these materials. Nanoparticles, both inorganic and organic, can now be programmatically assembled into complex 3D superlattices with high order when guided by DNA. By encoding functions into the as‐assembled nanoparticles, materials with excellent collective effects may be invented. Here, how nanoparticles with different shapes or functions are successfully fabricated into 3D lattices with the help of DNA shells coated on the surface and how scientists can produce desired lattices by design are reviewed. The cases to achieve dynamic superlattices of nanoparticles by affecting the environment where DNA survives are also discussed.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Gold nanoparticles (AuNPs) endowed with anisotropic DNA valency are an important class of materials, as they can assemble into complex structures with a minimal number of DNA strands. However, methods to encode 3D DNA strand patterns on AuNPs with a controlled number of unique DNA strands in a predesigned spatial arrangement remain elusive. In this work, a simple one‐step method to yield such DNA‐decorated AuNPs is demonstrated, through encapsulating AuNPs into DNA minimal nanocages. The AuNP@DNA cage encapsulation complex inherits the 3D anisotropic molecular information from the DNA nanocage with enhanced structural stability. The DNA nanocage can be further functionalized and used as a building block for the self‐assembly of complex architectures, such as dimers and trimers, programmed assemblies with sequential growth DNA backbones and DNA origami.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号