首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

2.
Solution‐processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long‐term stability and large‐area device demonstration. Here, an additive‐engineering strategy is developed to realize a facile and convenient fabrication method of large‐area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI3), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm2, and the high‐performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI3‐based PSCs so far.  相似文献   

3.
Large‐scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment‐friendly solvents. Thick films with high‐performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face‐on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer‐fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large‐area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)‐based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm2 for a single cell and 5.18% for a 20 cm2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large‐scale fabrication and future applications.  相似文献   

4.
Solution‐processed colloidal quantum dots (CQDs) are attractive materials for the realization of low‐cost and efficient optoelectronic devices. Although impressive CQD‐solar‐cell performance has been achieved, the fabrication of CQD films is still limited to laboratory‐scale small areas because of the complicated deposition of CQD inks. Large‐area, uniform deposition of lead sulfide (PbS) CQD inks is successfully realized for photovoltaic device applications by engineering the solute redistribution of CQD droplets. It is shown experimentally and theoretically that the solute‐redistribution dynamics of CQD droplets are highly dependent on the movement of the contact line and on the evaporation kinetics of the solvent. By lowering the friction constant of the contact line and increasing the evaporation rate of the droplets, a uniform deposition of CQD ink in length and width over large areas is realized. By utilizing a spray‐coating process, large‐area (up to 100 cm2) CQD films are fabricated with 3–7% thickness variation on various substrates including glass, indium tin oxide glass, and polyethylene terephthalate. Furthermore, scalable fabrication of CQD solar cells is demonstrated with 100 cm2 CQD films which exhibits a notably high efficiency of 8.10%.  相似文献   

5.
Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar‐power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high‐performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar‐power source. A power conversion efficiency of 12.32% for a flexible large‐scale device (polyethylene terephthalate substrate, indium tin oxide‐free, 1.01 cm2) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics.  相似文献   

6.
Organic–inorganic hybrid perovskites (OIHPs) are new photoactive layer candidates for lightweight and flexible solar cells due to their low‐temperature process capability; however, the reported efficiency of flexible OIHP devices is far behind those achieved on rigid glass substrates. Here, it is revealed that the limiting factor is the different perovskite film deposition conditions required to form the same film morphology on flexible substrates. An optimized perovskite film composition needs a different precursor ratio, which is found to be essential for the formation of high‐quality perovskite films with longer radiative carrier recombination lifetime, smaller density of trap states, reduced precursor residue, and uniform and pin‐hole free films. A record efficiency of 18.1% is achieved for the flexible perovskite solar‐cell devices made on an indium tin oxide/poly(ethylene terephthalate) substrate via a low temperature (≤100 °C) solution process.  相似文献   

7.
Developing low‐cost photovoltaic absorbers that can harvest the short‐wave infrared (SWIR) part of the solar spectrum, which remains unharnessed by current Si‐based and perovskite photovoltaic technologies, is a prerequisite for making high‐efficiency, low‐cost tandem solar cells. Here, infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic–organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short‐circuit current density of 34 mA cm?2 and a power conversion efficiency (PCE) up to 7.9%, which is a current record for SWIR CQD solar cells. When this cell is placed at the back of an MAPbI3 perovskite film, it delivers an extra 3.3% PCE by harnessing light beyond 750 nm.  相似文献   

8.
All‐inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar‐architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD‐) sensitized all‐inorganic CsPbBr3 perovskite inverse opal (IO) films via a template‐assisted, spin‐coating method. CsPbBr3 IO introduces slow‐photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr3, slow‐photon effect of CsPbBr3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron–hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double‐boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon‐to‐electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices.  相似文献   

9.
Tin (Sn)‐based perovskites are increasingly attractive because they offer lead‐free alternatives in perovskite solar cells. However, depositing high‐quality Sn‐based perovskite films is still a challenge, particularly for low‐temperature planar heterojunction (PHJ) devices. Here, a “multichannel interdiffusion” protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI2 layer to create uniform FASnI3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI2. What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best‐performing FASnI3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI3‐based flexible solar cell assembled on a polyethylene naphthalate–indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead‐free Sn‐based perovskites.  相似文献   

10.
Wearable devices are mainly based on plastic substrates, such as polyethylene terephthalate and polyethylene naphthalate, which causes environmental pollution after use due to the long decomposition periods. This work reports on the fabrication of a biodegradable and biocompatible transparent conductive electrode derived from bamboo for flexible perovskite solar cells. The conductive bioelectrode exhibits extremely flexible and light‐weight properties. After bending 3000 times at a 4 mm curvature radius or even undergoing a crumpling test, it still shows excellent electrical performance and negligible decay. The performance of the bamboo‐based bioelectrode perovskite solar cell exhibits a record power conversion efficiency (PCE) of 11.68%, showing the highest efficiency among all reported biomass‐based perovskite solar cells. It is remarkable that this flexible device has a highly bendable mechanical stability, maintaining over 70% of its original PCE during 1000 bending cycles at a 4 mm curvature radius. This work paves the way for perovskite solar cells toward comfortable and environmentally friendly wearable devices.  相似文献   

11.
Metal halide perovskite solar cells (PSCs) have advanced to the forefront of solution‐processed photovoltaic techniques and made stunning progress in power conversion efficiency (PCE). Further improvements in device performances rely on perfecting the structure and morphology of perovskite films. However, undesirable defects such as pinholes and grain boundaries are often created in film preparations due to lack of knowledge of the precise reaction mechanism. Here, in situ grazing‐incidence X‐ray diffraction (GI‐XRD) investigations are performed, facilitated by other techniques, on the formation of the widely adopted MAPbI3 (MA = methylammonium) perovskite films from their intermediate adduct (IA) phases. The influences of solvent vapor atmospheres on MAPbI3 films are also systematically investigated, where the dynamic conversion processes between different phases are visualized in real time. Further in situ GI‐XRD and infrared spectroscopy measurements reveal that the IA phases contain both N,N‐dimethylformamide and dimethyl sulfoxide (DMSO) as coordinating molecules. By tuning the DMSO concentration in perovskite precursors, the ideal perovskite film is formed and the best PCE is achieved for the planar MAPbI3‐based PSCs. These findings highlight the role of IA phases and the effect of solvent atmospheres on the quality of perovskite films, providing direct insights into their growth mechanism.  相似文献   

12.
Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large‐scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)‐rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb–Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less‐toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point.  相似文献   

13.
Organic–inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large‐grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single‐crystal counterparts. Here, a facile topotactic‐oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial‐crystallographic texture, micrometer‐grain morphology, high crystallinity, low trap density (≈4 × 1014 cm?3), and unprecedented 9 GHz charge‐carrier mobility (71 cm2 V?1 s?1), is demonstrated. TOA‐perovskite‐based n‐i‐p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse‐scan efficiency (19.7%). The TOA process is also applicable for growing other state‐of‐the‐art perovskite alloys, including triple‐cation and mixed‐halide perovskites.  相似文献   

14.
A simple, low‐cost, large area, and continuous scalable coating method is proposed for the fabrication of hybrid organic–inorganic perovskite solar cells. A megasonic spray‐coating method utilizing a 1.7 MHz megasonic nebulizer that could fabricate reproducible large‐area planar efficient perovskite films is developed. The coating method fabricates uniform large‐area perovskite film with large‐sized grain since smaller and narrower sized mist droplets than those generated by existing ultrasonic spray methods could be generated by megasonic spraying. The volume flow rate of the CH3NH3PbI3 precursor solution and the reaction temperature are controlled, to obtain a high quality perovskite active layer. The devices reach a maximum efficiency of 16.9%, with an average efficiency of 16.4% from 21 samples. The applicability of megasonic spray coating to the fabrication of large‐area solar cells (1 cm2), with a power conversion efficiency of 14.2%, is also demonstrated. This is a record high efficiency for large‐area perovskite solar cells fabricated by continuous spray coating.  相似文献   

15.
Despite the recent unprecedented increase in the power conversion efficiencies (PCEs) of small‐area devices (≤0.1 cm2), the PCEs deteriorate drastically for PSCs of larger areas because of the incomplete film coverage caused by the dewetting of the hydrophilic perovskite precursor solutions on the hydrophobic organic charge‐transport layers (CTLs). Here, an innovative method of fabricating scalable PSCs on all types of organic CTLs is reported. By introducing an amphiphilic conjugated polyelectrolyte as an interfacial compatibilizer, fabricating uniform perovskite films on large‐area substrates (18.4 cm2) and PSCs with the total active area of 6 cm2 (1 cm2 × 6 unit cells) via a single‐turn solution process is successfully demonstrated. All of the unit cells exhibit highly uniform PCEs of 16.1 ± 0.9% (best PCE of 17%), which is the highest value for printable PSCs with a total active area larger than 1 cm2.  相似文献   

16.
A perovskite solar cell (PSC) employing an organic–inorganic lead halide perovskite light harvester, seeded in 2009 with power conversion efficiency (PCE) of 3.8% and grown in 2011 with PCE of 6.5% in dye‐sensitized solar cell structure, has received great attention since the breakthrough reports ≈10% efficient solid‐state PCSs demonstrating 500 h stability. Developments of device layout and high‐quality perovskite film eventually lead to a PCE over 22%. As of October 31, 2017, the highest PCE of 22.7% is listed in an efficiency chart provided by NREL. In this Review, the methodologies to obtain highly efficient PSCs are described in detail. In order to achieve a PCE of over 20% reproducibly, key technologies are disclosed from the viewpoint of precursor solution chemistry, processing for defect‐free perovskite films, and passivation of grain boundaries. Understanding chemical species in precursor solution, crystal growth kinetics, light–matter interaction, and controlling defects is expected to give important insights into not only reproducible production of high PCE over 20% but also further enhancement of the PCE of PCSs.  相似文献   

17.
The stability of a tin‐based perovskite solar cell is a major challenge. Here, hybrid tin‐based perovskite solar cells in a new series that incorporate a nonpolar organic cation, guanidinium (GA+), in varied proportions into the formamidinium (FA+) tin triiodide perovskite (FASnI3) crystal structure in the presence of 1% ethylenediammonium diiodide (EDAI2) as an additive, are reported. The device performance is optimized at a precursor ratio (GAI:FAI) of 20:80 to attain a power conversion efficiency (PCE) of 8.5% when prepared freshly; the efficiencies continuously increase to attain a record PCE of 9.6% after storage in a glove‐box environment for 2000 h. The hybrid perovskite works stably under continuous 1 sun illumination for 1 h and storage in air for 6 days without encapsulation. Such a tin‐based perovskite passes all harsh standard tests, and the efficiency of a fresh device, 8.3%, is certified. The great performance and stability of the device reported herein attains a new milestone for lead‐free perovskite solar cells on a path toward commercial development.  相似文献   

18.
Engineering the chemical composition of organic and inorganic hybrid perovskite materials is one of the most feasible methods to boost the efficiency of perovskite solar cells with improved device stability. Among the diverse hybrid perovskite family of ABX3, formamidinium (FA)‐based mixed perovskite (e.g., FA1?x Csx PbI3) possesses optimum bandgaps, superior optoelectronic property, as well as thermal‐ and photostability, which is proven to be the most promising candidate for advanced solar cell. Here, FA0.9Cs0.1PbI3(Cl) is implemented as the light‐harvesting layer in planar devices, whereas a low temperature, two‐step solution deposition method is employed for the first time in this materials system. This paper comprehensively exploits the role of Cs+ in the FA0.9Cs0.1PbI3(Cl) perovskite that affects the precursor chemistry, film nucleation and grain growth, and defect property via pre‐intercalation of CsI in the inorganic framework. In addition, the resultant FA0.9Cs0.1PbI3(Cl) films are demonstrated to exhibit an improved optoelectronic property with an elevated device power conversion efficiency (PCE) of 18.6%, as well as a stable phase with substantial enhancement in humidity and thermal stability, as compared to that of FAPbI3(Cl). The present method is able to be further extended to a more complicated (FA,MA,Cs)PbX3 material system by delivering a PCE of 19.8%.  相似文献   

19.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

20.
The printing of large‐area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small‐area devices is approaching 15%, whereas the PCE for large‐area devices has also surpassed 10% in a single cell with an area of ≈1 cm2. Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large‐area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large‐area fabrication, including knife coating, slot‐die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick‐film material systems with efficient modular designs exhibiting low‐efficiency losses and employing the right printing methods, the fabrication of large‐area OSCs will be successfully realized in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号