共查询到20条相似文献,搜索用时 15 毫秒
1.
Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extra‐High Electrical Conductivity 下载免费PDF全文
Zhepeng Zhang Jingjing Niu Pengfei Yang Yue Gong Qingqing Ji Jianping Shi Qiyi Fang Shaolong Jiang He Li Xiebo Zhou Lin Gu Xiaosong Wu Yanfeng Zhang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(37)
2D metallic transition‐metal dichalcogenides (MTMDs) have recently emerged as a new class of materials for the engineering of novel electronic phases, 2D superconductors, magnets, as well as novel electronic applications. However, the mechanical exfoliation route is predominantly used to obtain such metallic 2D flakes, but the batch production remains challenging. Herein, the van der Waals epitaxial growth of monocrystalline, 1T‐phase, few‐layer metallic VSe2 nanosheets on an atomically flat mica substrate via a “one‐step” chemical vapor deposition method is reported. The thickness of the VSe2 nanosheets is precisely tuned from several nanometers to several tenths of nanometers. More significantly, the 2D VSe2 single crystals are found to present an excellent metallic feature, as evidenced by the extra‐high electrical conductivity of up to 106 S m?1, 1–4 orders of magnitude higher than that of various conductive 2D materials. The thickness‐dependent charge‐density‐wave phase transitions are also examined through low‐temperature transport measurements, which reveal that the synthesized 2D metallic 1T‐VSe2 nanosheets should serve as good research platforms for the detecting novel many‐body states. These results open a new path for the synthesis and property investigations of nanoscale‐thickness 2D MTMDs crystals. 相似文献
2.
Vanadium Diselenide Single Crystals: Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extra‐High Electrical Conductivity (Adv. Mater. 37/2017) 下载免费PDF全文
Zhepeng Zhang Jingjing Niu Pengfei Yang Yue Gong Qingqing Ji Jianping Shi Qiyi Fang Shaolong Jiang He Li Xiebo Zhou Lin Gu Xiaosong Wu Yanfeng Zhang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(37)
3.
Sina Najmaei Mahesh R. Neupane Barbara M. Nichols Robert A. Burke Alexander L. Mazzoni Matthew L. Chin Daniel A. Rhodes Luis Balicas Aaron D. Franklin Madan Dubey 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(20)
The mechanisms of carrier transport in the cross‐plane crystal orientation of transition metal dichalcogenides are examined. The study of in‐plane electronic properties of these van der Waals compounds has been the main research focus in recent years. However, the distinctive physical anisotropies, short‐channel physics, and tunability of cross layer interactions can make the study of their electronic properties along the out‐of‐plane crystal orientation valuable. Here, the out‐of‐plane carrier transport mechanisms in niobium diselenide and hafnium disulfide are explored as two broadly different representative materials. Temperature‐dependent current–voltage measurements are preformed to examine the mechanisms involved. First principles simulations and a tunneling model are used to understand these results and quantify the barrier height and hopping distance properties. Using Raman spectroscopy, the thermal response of the chemical bonds is directly explored and the insight into the van der Waals gap properties is acquired. These results indicate that the distinct cross‐plane carrier transport characteristics of the two materials are a result of material thermal properties and thermally mediated transport of carriers through the van der Waals gaps. Exploring the cross‐plane electron transport, the exciting physics involved is unraveled and potential new avenues for the electronic applications of van der Waals layers are inspired. 相似文献
4.
5.
Qin Lian Xuanting Zhu Xudong Wang Wei Bai Jing Yang Yuanyuan Zhang Ruijuan Qi Rong Huang Weida Hu Xiaodong Tang Jianlu Wang Junhao Chu 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(17)
Van der Waals epitaxy (vdWE) is crucial for heteroepitaxy of covalence‐bonded semiconductors on 2D layered materials because it is not subject to strict substrate requirements and the epitaxial materials can be transferred onto various substrates. However, planar film growth in covalence‐bonded semiconductors remains a critical challenge of vdWE because of the extremely low surface energy of 2D materials. In this study, direct growth of wafer‐scale single‐crystalline cadmium telluride (CdTe) films is achieved on 2D layered transparent mica through molecular beam epitaxy. The vdWE CdTe films exhibit a flat surface resulting from the 2D growth regime, and high crystal quality as evidenced by a low full width at half maximum of 0.05° for 120 nm thick films. A perfect lattice fringe appears at the interfaces, implying a fully relaxed state of the epitaxial CdTe films correlated closely to the unique nature of vdWE. Moreover, the vdWE CdTe photodetectors demonstrate not only ultrasensitive optoelectronic response with optimal responsivity of 834 A W?1 and ultrahigh detectivity of 2.4 × 1014 Jones but also excellent mechanical flexibility and durability, indicating great potential in flexible and wearable devices. 相似文献
6.
7.
Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero‐Bilayers 下载免费PDF全文
Dinh Hoa Luong Hyun Seok Lee Guru Prakash Neupane Shrawan Roy Ganesh Ghimire Jin Hee Lee Quoc An Vu Young Hee Lee 《Advanced materials (Deerfield Beach, Fla.)》2017,29(33)
Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe2/MoS2 hetero‐bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band‐to‐band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. 相似文献
8.
Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High‐Performance Organic Electronics 下载免费PDF全文
Chul‐Ho Lee Theanne Schiros Elton J. G. Santos Kevin G. Yager Seok Ju Kang Sunwoo Lee Jaeeun Yu Kenji Watanabe Takashi Taniguchi James Hone Efthimios Kaxiras Colin Nuckolls Philip Kim 《Advanced materials (Deerfield Beach, Fla.)》2014,26(18):2812-2817
9.
Huang Xu Cheng Guo Jiazhen Zhang Wanlong Guo Chia‐Nung Kuo Chin Shan Lue Weida Hu Lin Wang Gang Chen Antonio Politano Xiaoshuang Chen Wei Lu 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(52)
Recent years have witnessed rapid progresses made in the photoelectric performance of two‐dimensional materials represented by graphene, black phosphorus, and transition metal dichalcogenides. Despite significant efforts, a photodetection technique capable for longer wavelength, higher working temperature as well as fast responsivity, is still facing huge challenges due to a lack of best among bandgap, dark current, and absorption ability. Exploring topological materials with nontrivial band transport leads to peculiar properties of quantized phenomena such as chiral anomaly, and magnetic‐optical effect, which enables a novel feasibility for an advanced optoelectronic device working at longer wavelength. In this work, the direct generation of photocurrent at low energy terahertz (THz) band at room temperature is implemented in a planar metal–PtTe2–metal structure. The results show that the THz photodetector based on PtTe2 with bow‐tie‐type planar contacts possesses a high photoresponsivity (1.6 A W?1 without bias voltage) with a response time less than 20 µs, while the PtTe2–graphene heterostructure‐based detector can reach responsivity above 1.4 kV W?1 and a response time shorter than 9 µs. Remarkably, it is already exploitable for large area imaging applications. These results suggest that topological semimetals such as PtTe2 can be ideal materials for implementation in a high‐performing photodetection system at THz band. 相似文献
10.
Matthieu Fortin‐Deschênes Robert M. Jacobberger Charles‐Antoine Deslauriers Olga Waller tienne Bouthillier Michael S. Arnold Oussama Moutanabbir 《Advanced materials (Deerfield Beach, Fla.)》2019,31(21)
Van der Waals (vdW) heterostructures have recently been introduced as versatile building blocks for a variety of novel nanoscale and quantum technologies. Harnessing the unique properties of these heterostructures requires a deep understanding of the involved interfacial interactions and a meticulous control of the growth of 2D materials on weakly interacting surfaces. Although several epitaxial vdW heterostructures have been achieved experimentally, the mechanisms governing their synthesis are still nebulous. With this perspective, herein, the growth dynamics of antimonene on graphene are investigated in real time. In situ low‐energy electron microscopy reveals that nucleation predominantly occurs on 3D nuclei followed by a self‐limiting lateral growth with morphology sensitive to the deposition rate. Large 2D layers are observed at high deposition rates, whereas lower growth rates trigger an increased multilayer nucleation at the edges as they become aligned with the Z2 orientation leading to atoll‐like islands with thicker, well‐defined bands. This complexity of the vdW growth is elucidated based on the interplay between the growth rate, surface diffusion, and edges orientation. This understanding lays the groundwork for a better control of the growth of vdW heterostructures, which is critical to their large‐scale integration. 相似文献
11.
12.
Ruiqing Cheng Yao Wen Lei Yin Fengmei Wang Feng Wang Kaili Liu Tofik Ahmed Shifa Jie Li Chao Jiang Zhenxing Wang Jun He 《Advanced materials (Deerfield Beach, Fla.)》2017,29(35)
Due to the novel physical properties, high flexibility, and strong compatibility with Si‐based electronic techniques, 2D nonlayered structures have become one of the hottest topics. However, the realization of 2D structures from nonlayered crystals is still a critical challenge, which requires breaking the bulk crystal symmetry and guaranteeing the highly anisotropic crystal growth. CdTe owns a typical wurtzite crystal structure, which hinders the 2D anisotropic growth of hexagonal‐symmetry CdTe. Here, for the first time, the 2D anisotropic growth of ultrathin nonlayered CdTe as thin as 4.8 nm via an effective van der Waals epitaxy method is demonstrated. The anisotropic ratio exceeds 103. Highly crystalline nanosheets with uniform thickness and large lateral dimensions are obtained. The in situ fabricated ultrathin 2D CdTe photodetector shows ultralow dark current (≈100 fA), as well as high detectivity, stable photoswitching, and fast photoresponse speed (τrising = 18.4 ms, τdecay = 14.7 ms). Besides, benefitting from its 2D planar geometry, CdTe nanosheet exhibits high compatibility with flexible substrates and traditional microfabrication techniques, indicating its significant potential in the applications of flexible electronic and optoelectronic devices. 相似文献
13.
Metal‐Free 2D/2D Phosphorene/g‐C3N4 Van der Waals Heterojunction for Highly Enhanced Visible‐Light Photocatalytic H2 Production 下载免费PDF全文
Jingrun Ran Weiwei Guo Hailong Wang Bicheng Zhu Jiaguo Yu Shi‐Zhang Qiao 《Advanced materials (Deerfield Beach, Fla.)》2018,30(25)
The generation of green hydrogen (H2) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar‐to‐H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal‐free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal‐free phosphorene/graphitic carbon nitride (g‐C3N4) is fabricated. The phosphorene/g‐C3N4 nanocomposite shows an enhanced visible‐light photocatalytic H2 production activity of 571 µmol h?1 g?1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron‐based X‐ray absorption near‐edge structure, and theoretical calculations. This work not only reports a new metal‐free phosphorene/g‐C3N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics. 相似文献
14.
P‐GaSe/N‐MoS2 Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation 下载免费PDF全文
Nan Zhou Renyan Wang Xing Zhou Hongyue Song Xing Xiong Yao Ding Jingtao Lü Lin Gan Tianyou Zhai 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(7)
The important role of p–n junction in modulation of the optoelectronic properties of semiconductors is widely cognized. In this work, for the first time the synthesis of p‐GaSe/n‐MoS2 heterostructures via van der Waals expitaxial growth is reported, although a considerable lattice mismatching of ≈18% exists. According to the simulation, a significant type II p–n junction barrier located at the interface is expected to be formed, which can modulate optoelectronic properties of MoS2 effectively. It is intriguing to reveal that the presence of GaSe can result in obvious Raman and photoluminescence (PL) shift of MoS2 compared to that of pristine one, more interestingly, for PL peak shift, the effect of GaSe‐induced tensile strain on MoS2 has overcome the p‐doping effect of GaSe, evidencing the strong interlayer coupling between GaSe and MoS2. As a result, the photoresponse rate of heterostructures is improved by almost three orders of magnitude compared with that of pristine MoS2. 相似文献
15.
N‐Type 2D Organic Single Crystals for High‐Performance Organic Field‐Effect Transistors and Near‐Infrared Phototransistors 下载免费PDF全文
Cong Wang Xiaochen Ren Chunhui Xu Beibei Fu Ruihao Wang Xiaotao Zhang Rongjin Li Hongxiang Li Huanli Dong Yonggang Zhen Shengbin Lei Lang Jiang Wenping Hu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(16)
Organic field‐effect transistors and near‐infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long‐range order in spite of only few molecular layers. Herein, for the first time, air‐stable 2DCOS of n‐type organic semiconductors (a furan‐thiophene quinoidal compound, TFT‐CN) with strong absorbance around 830 nm, by the facile drop‐casting method on the surface of water are successfully prepared. Almost millimeter‐sized TFT‐CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field‐effect electron mobility (1.36 cm2 V?1 s?1) and high on/off ratio (up to 108) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off‐state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 1014 Jones because the devices can operate in full depletion at the off‐state, superior to the majority of the reported organic‐based NIR phototransistors. 相似文献
16.
Near‐Infrared Photodetectors Based on MoTe2/Graphene Heterostructure with High Responsivity and Flexibility 下载免费PDF全文
Wenzhi Yu Shaojuan Li Yupeng Zhang Weiliang Ma Tian Sun Jian Yuan Kai Fu Qiaoliang Bao 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(24)
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors. 相似文献
17.
Yan Chen Xudong Wang Guangjian Wu Zhen Wang Hehai Fang Tie Lin Shuo Sun Hong Shen Weida Hu Jianlu Wang Jinglan Sun Xiangjian Meng Junhao Chu 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(9)
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. 相似文献
18.
19.
20.
Jiadong Yu Lai Wang Zhibiao Hao Yi Luo Changzheng Sun Jian Wang Yanjun Han Bing Xiong Hongtao Li 《Advanced materials (Deerfield Beach, Fla.)》2020,32(15):1903407
III-nitride semiconductors have attracted considerable attention in recent years owing to their excellent physical properties and wide applications in solid-state lighting, flat-panel displays, and solar energy and power electronics. Generally, GaN-based devices are heteroepitaxially grown on c-plane sapphire, Si (111), or 6H-SiC substrates. However, it is very difficult to release the GaN-based films from such single-crystalline substrates and transfer them onto other foreign substrates. Consequently, it is difficult to meet the ever-increasing demand for wearable and foldable applications. On the other hand, sp2-bonded two-dimensional (2D) materials, which exhibit hexagonal in-plane lattice arrangements and weakly bonded layers, can be transferred onto flexible substrates with ease. Hence, flexible III-nitride devices can be implemented through such 2D release layers. In this progress report, the recent advances in the different strategies for the growth of III-nitrides based on 2D materials are reviewed, with a focus on van der Waals epitaxy and transfer printing. Various attempts are presented and discussed herein, including the different kinds of 2D materials (graphene, hexagonal boron nitride, and transition metal dichalcogenides) used as release layers. Finally, current challenges and future perspectives regarding the development of flexible III-nitride devices are discussed. 相似文献