首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D van der Waals (vdWs) heterostructures exhibit intriguing optoelectronic properties in photodetectors, solar cells, and light‐emitting diodes. In addition, these materials have the potential to be further extended to optical memories with promising broadband applications for image sensing, logic gates, and synaptic devices for neuromorphic computing. In particular, high programming voltage, high off‐power consumption, and circuital complexity in integration are primary concerns in the development of three‐terminal optical memory devices. This study describes a multilevel nonvolatile optical memory device with a two‐terminal floating‐gate field‐effect transistor with a MoS2/hexagonal boron nitride/graphene heterostructure. The device exhibits an extremely low off‐current of ≈10?14 A and high optical switching on/off current ratio of over ≈106, allowing 18 distinct current levels corresponding to more than four‐bit information storage. Furthermore, it demonstrates an extended endurance of over ≈104 program–erase cycles and a long retention time exceeding 3.6 × 104 s with a low programming voltage of ?10 V. This device paves the way for miniaturization and high‐density integration of future optical memories with vdWs heterostructures.  相似文献   

2.
Many van der Waals layered 2D materials, such as h‐BN, transition metal dichalcogenides (TMDs), and group‐III monochalcogenides, have been predicted to possess piezoelectric and mechanically flexible natures, which greatly motivates potential applications in piezotronic devices and nanogenerators. However, only intrinsic in‐plane piezoelectricity exists in these 2D materials and the piezoelectric effect is confined in odd‐layers of TMDs. The present work is intent on combining the free‐standing design and piezoresponse force microscopy techniques to obtain and directly quantify the effective out‐of‐plane electromechanical coupling induced by strain gradient on atomically thin MoS2 and InSe flakes. Conspicuous piezoresponse and the measured piezoelectric coefficient with respect to the number of layers or thickness are systematically illustrated for both MoS2 and InSe flakes. Note that the promising effective piezoelectric coefficient (deff33) of about 21.9 pm V?1 is observed on few‐layered InSe. The out‐of‐plane piezoresponse arises from the net dipole moment along the normal direction of the curvature membrane induced by strain gradient. This work not only provides a feasible and flexible method to acquire and quantify the out‐of‐plane electromechanical coupling on van der Waals layered materials, but also paves the way to understand and tune the flexoelectric effect of 2D systems.  相似文献   

3.
The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec?1 at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2 van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2 vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2 as the channel, the SnSe/MoS2 vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage VP of ?0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec?1 and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.  相似文献   

4.
2D magnetic materials have generated an enormous amount of attention due to their unique 2D‐limited magnetism and their potential applications in spintronic devices. Recently, most of this research has focused on 2D van der Waals layered magnetic materials exfoliated from the bulk with random size and thicknesses. Controllable growth of these materials is still a great challenge. In contrast, 2D nonlayered magnetic materials have rarely been investigated, not especially regarding their preparation. CrnX (X = S, Se and Te; 0 < n < 1), a class of nonlayered transition metal dichalcogenides, has rapidly attracted extensive attention due to its abundance of structural compounds and unique magnetic properties. Herein, the controlled synthesis of ultrathin CrSe crystals, with grain size reaching the sub‐millimeter scale, on mica substrates via an ambient pressure chemical vapor deposition (CVD) method is demonstrated. A continuous CrSe film can also be achieved via precise control of the key growth parameters. Importantly, the CVD‐grown 2D CrSe crystals possess obvious ferromagnetic properties at temperatures below 280 K, which has not been observed experimentally before. This work broadens the scope of the CVD growth of 2D magnetic materials and highlights their significant application possibilities in spintronics.  相似文献   

5.
Memristive devices have been extensively demonstrated for applications in nonvolatile memory, computer logic, and biological synapses. Precise control of the conducting paths associated with the resistance switching in memristive devices is critical for optimizing their performances including ON/OFF ratios. Here, gate tunability and multidirectional switching can be implemented in memristors for modulating the conducting paths using hexagonal α‐In2Se3, a semiconducting van der Waals ferroelectric material. The planar memristor based on in‐plane (IP) polarization of α‐In2Se3 exhibits a pronounced switchable photocurrent, as well as gate tunability of the channel conductance, ferroelectric polarization, and resistance‐switching ratio. The integration of vertical α‐In2Se3 memristors based on out‐of‐plane (OOP) polarization is demonstrated with a device density of 7.1 × 109 in.?2 and a resistance‐switching ratio of well over 103. A multidirectionally operated α‐In2Se3 memristor is also proposed, enabling the control of the OOP (or IP) resistance state directly by an IP (or OOP) programming pulse, which has not been achieved in other reported memristors. The remarkable behavior and diverse functionalities of these ferroelectric α‐In2Se3 memristors suggest opportunities for future logic circuits and complex neuromorphic computing.  相似文献   

6.
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.  相似文献   

7.
2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V?1 s?1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W?1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.  相似文献   

8.
Ferroelectric field-effect transistors (FeFETs) are one of the most interesting ferroelectric devices; however, they, usually suffer from low interface quality. The recently discovered 2D layered ferroelectric materials, combining with the advantages of van der Waals heterostructures (vdWHs), may be promising to fabricate high-quality FeFETs with atomically thin thickness. Here, dual-gated 2D ferroelectric vdWHs are constructed using MoS2, hexagonal boron nitride (h-BN), and CuInP2S6 (CIPS), which act as a high-performance nonvolatile memory and programmable rectifier. It is first noted that the insertion of h-BN and dual-gated coupling device configuration can significantly stabilize and effectively polarize ferroelectric CIPS. Through this design, the device shows a record-high performance with a large memory window, large on/off ratio (107), ultralow programming state current (10−13 A), and long-time endurance (104 s) as nonvolatile memory. As for programmable rectifier, a wide range of gate-tunable rectification behavior is observed. Moreover, the device exhibits a large rectification ratio (3 × 105) with stable retention under the programming state. This demonstrates the promising potential of ferroelectric vdWHs for new multifunctional ferroelectric devices.  相似文献   

9.
As a member of the group IVB transition metal dichalcogenides (TMDs) family, hafnium disulfide (HfS2) is recently predicted to exhibit higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMDs. However, the synthesis of high‐quality HfS2 crystals, sparsely reported, has greatly hindered the development of this new field. Here, a facile strategy for controlled synthesis of high‐quality atomic layered HfS2 crystals by van der Waals epitaxy is reported. Density functional theory calculations are applied to elucidate the systematic epitaxial growth process of the S‐edge and Hf‐edge. Impressively, the HfS2 back‐gate field‐effect transistors display a competitive mobility of 7.6 cm2 V?1 s?1 and an ultrahigh on/off ratio exceeding 108. Meanwhile, ultrasensitive near‐infrared phototransistors based on the HfS2 crystals (indirect bandgap ≈1.45 eV) exhibit an ultrahigh responsivity exceeding 3.08 × 105 A W?1, which is 109‐fold higher than 9 × 10?5 A W?1 obtained from the multilayer MoS2 in near‐infrared photodetection. Moreover, an ultrahigh photogain exceeding 4.72 × 105 and an ultrahigh detectivity exceeding 4.01 × 1012 Jones, superior to the vast majority of the reported 2D‐materials‐based phototransistors, imply a great promise in TMD‐based 2D electronic and optoelectronic applications.  相似文献   

10.
Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high‐quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2‐based filed‐effect transistors (FETs) show n‐type semiconducting behavior with a current on/off ratio of ≈106 and a charge carrier mobility of ≈9.3 cm2 Vs−1. These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high‐resolution transmission electron microscopy imaging and thickness‐dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large‐scale fabrication of ReS2‐based high‐performance optoelectronic devices, such as anisotropic FETs and polarization detection.  相似文献   

11.
Van der Waals hybrids of graphene and transition metal dichalcogenides exhibit an extremely large response to optical excitation, yet counting of photons with single‐photon resolution is not achieved. Here, a dual‐gated bilayer graphene (BLG) and molybdenum disulphide (MoS2) hybrid are demonstrated, where opening a band gap in the BLG allows extremely low channel (receiver) noise and large optical gain (≈1010) simultaneously. The resulting device is capable of unambiguous determination of the Poissonian emission statistics of an optical source with single‐photon resolution at an operating temperature of 80 K, dark count rate 0.07 Hz, and linear dynamic range of ≈40 dB. Single‐shot number‐resolved single‐photon detection with van der Waals heterostructures may impact multiple technologies, including the linear optical quantum computation.  相似文献   

12.
Structural symmetry is a simple way to quantify the anisotropic properties of materials toward unique device applications including anisotropic transportation and polarization‐sensitive photodetection. The enhancement of anisotropy can be achieved by artificial symmetry‐reduction design. A core–shell SbI3/Sb2O3 nanowire, a heterostructure bonded by van der Waals forces, is introduced as an example of enhancing the performance of polarization‐sensitive photodetectors via symmetry reduction. The structural, vibrational, and optical anisotropies of such core–shell nanostructures are systematically investigated. It is found that the anisotropic absorbance of a core–shell nanowire is obviously higher than that of two single compounds from both theoretical and experimental investigations. Anisotropic photocurrents of the polarization‐sensitive photodetectors based on these core–shell SbI3/Sb2O3 van der Waals nanowires are measured ranging from ultraviolet (UV) to visible light (360–532 nm). Compared with other van der Waals 1D materials, low anisotropy ratio (Imax/Imin) is measured based on SbI3 but a device based on this core–shell nanowire possesses a relatively high anisotropy ratio of ≈3.14 under 450 nm polarized light. This work shows that the low‐symmetrical core–shell van der Waals heterostructure has large potential to be applied in wide range polarization‐sensitive photodetectors.  相似文献   

13.
Two–dimensional layered materials (2DLMs) have attracted considerable recent interest as a new material platform for fundamental materials science and potential new technologies. Here we report the growth of layered metal halide materials and their optoelectronic properties. BiI3 nanoplates can be readily grown on SiO2/Si substrates with a hexagonal geometry, with a thickness in the range of 10–120 nm and a lateral dimension of 3–10 µm. Transmission electron microscopy and electron diffraction studies demonstrate that the individual nanoplates are high quality single crystals. Micro‐Raman studies show characteristic A g band at ≈115 cm?1 with slight red‐shift with decreasing thickness, and micro‐photoluminescence studies show uniform emission around 690 nm with blue‐shift with decreasing thickness. Electrical transport studies of individual nanoplates show n‐type semiconductor characteristics with clear photoresponse. Further, the BiI3 can be readily grown on other 2DLMs (e.g., WSe2) to form van der Waals heterostructures. Electrical transport measurements of BiI3/WSe2 vertical heterojunctions demonstrate p–n diode characteristics with gate‐tunable rectification behavior and distinct photovoltaic effect. The synthesis of the BiI3 nanoplates can expand the library of 2DLMs and enable a wider range of van der Waals heterostructures.  相似文献   

14.
Nano‐floating gate memory (NFGM) devices are transistor‐type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p‐type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle–particle interactions. CoFe2O4 NP‐based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read Ion/Ioff) of ≈2.98 × 103, and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high‐performance organic memory devices.  相似文献   

15.
Organic field‐effect transistor (OFET) memory devices made using highly stable iron‐storage protein nanoparticle (NP) multilayers and pentacene semiconductor materials are introduced. These transistor memory devices have nonvolatile memory properties that cause reversible shifts in the threshold voltage (Vth) as a result of charge trapping and detrapping in the protein NP (i.e., the ferritin NP with a ferrihydrite phosphate core) gate dielectric layers rather than the metallic NP layers employed in conventional OFET memory devices. The protein NP‐based OFET memory devices exhibit good programmable memory properties, namely, large memory window ΔVth (greater than 20 V), a fast switching speed (10 μs), high ON/OFF current ratio (above 104), and good electrical reliability. The memory performance of the devices is significantly enhanced by molecular‐level manipulation of the protein NP layers, and various biomaterials with heme FeIII/FeII redox couples similar to a ferrihydrite phosphate core are also employed as charge storage dielectrics. Furthermore, when these protein NP multilayers are deposited onto poly(ethylene naphthalate) substrates coated with an indium tin oxide gate electrode and a 50‐nm‐thick high‐k Al2O3 gate dielectric layer, the approach is effectively extended to flexible protein transistor memory devices that have good electrical performance within a range of low operating voltages (<10 V) and reliable mechanical bending stability.  相似文献   

16.
Implementing photovoltaic devices based on high efficiency thin‐film technologies on cheap, light‐weight and flexible polymeric substrates is highly appealing to cut down costs in industrial production and to accelerate very large scale deployment of photovoltaics in the upcoming years. Lift‐off processes, which allow separating active layers from primary substrates and subsequent transfer onto an alternative substrate without modifying the upstream production process and without performance losses, are an emerging alternative to direct growth on polymeric substrates. This study concerns the feasibily of direct mechanical lift‐off process for high efficiency Cu(In,Ga)Se2 (CIGS) thin film solar cells grown by coevaporation on glass/molybdenum substrates without performance losses. The study presents an in depth characterization (SEM,AFM,GIXRD,XPS) of samples leading to excellent lift‐off properties. They are explained by a specific gallium rich CIGS graded interface structure according to the interfacial sequence glass/Mo/MoSe2/GaxSey/Ga‐rich‐CIGS. The interfacial layer, attributed to GaSe, has a layered structure and out performs the molybdenum diselenide layered layer which forms spontaneously at the interface Mo/CIGS. It allows a very easy lift‐off process at the interface GaSe/CIGS thanks to Van‐der‐Waals adhesion mechanism in GaSe. Key physical‐chemical parameters are identified and analyzed. After lift‐off, an efficiency of 14.3%, higher than the initial reference CIGS solar cell efficiency (13.8%) is measured.  相似文献   

17.
Photoinduced memory devices with fast program/erase operations are crucial for modern communication technology, especially for high‐throughput data storage and transfer. Although some photoinduced memories based on 2D materials have already demonstrated desirable performance, the program/erase speed is still limited to hundreds of micro‐seconds. A high‐speed photoinduced memory based on MoS2/single‐walled carbon nanotubes (SWCNTs) network mixed‐dimensional van der Waals heterostructure is demonstrated here. An intrinsic ultrafast charge transfer occurs at the heterostructure interface between MoS2 and SWCNTs (below 50 fs), therefore enabling a record program/erase speed of ≈32/0.4 ms, which is faster than that of the previous reports. Furthermore, benefiting from the unique device structure and material properties, while achieving high‐speed program/erase operation, the device can simultaneously obtain high program/erase ratio (≈106), appropriate storage time (≈103 s), record‐breaking detectivity (≈1016 Jones) and multibit storage capacity with a simple program/erase operation. It even has a potential application as a flexible optoelectronic device. Therefore, the designed concept here opens an avenue for high‐throughput fast data communications.  相似文献   

18.
Functional van der Waals heterojunctions of transition metal dichalcogenides are emerging as a potential candidate for the basis of next‐generation logic devices and optoelectronics. However, the complexity of synthesis processes so far has delayed the successful integration of the heterostructure device array within a large scale, which is necessary for practical applications. Here, a direct synthesis method is introduced to fabricate an array of self‐assembled WSe2/MoS2 heterostructures through facile solution‐based directional precipitation. By manipulating the internal convection flow (i.e., Marangoni flow) of the solution, the WSe2 wires are selectively stacked over the MoS2 wires at a specific angle, which enables the formation of parallel‐ and cross‐aligned heterostructures. The realized WSe2/MoS2‐based p–n heterojunction shows not only high rectification (ideality factor: 1.18) but also promising optoelectrical properties with a high responsivity of 5.39 A W?1 and response speed of 16 µs. As a feasible application, a WSe2/MoS2‐based photodiode array (10 × 10) is demonstrated, which proves that the photosensing system can detect the position and intensity of an external light source. The solution‐based growth of hierarchical structures with various alignments could offer a method for the further development of large‐area electronic and optoelectronic applications.  相似文献   

19.
Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe2/MoS2 hetero‐bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band‐to‐band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices.  相似文献   

20.
2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2Se3 grid electrodes by copper‐atom intercalation is presented. These Cu‐intercalated 2D Bi2Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2Se3 grid electrodes is greatly improved from 900 Ω sq?1, 68% to 300 Ω sq?1, 82% in the visible range; with better performance of 300 Ω sq?1, 91% achieved in the near‐infrared region. These unique properties of Cu‐intercalated topological insulator grid nanostructures may boost their potential applications in high‐performance optoelectronics, especially for infrared optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号