首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconducting polymers with π‐conjugated electronic structures have potential application in the large‐scale printable fabrication of high‐performance electronic and optoelectronic devices. However, owing to their poor environmental stability and high‐cost synthesis, polymer semiconductors possess limited device implementation. Here, an approach for constructing a π‐conjugated polymer/graphene composite material to circumvent these limitations is provided, and then this material is patterned into 1D arrays. Driven by the π–π interaction, several‐layer polymers can be adsorbed onto the graphene planes. The low consumption of the high‐cost semiconductor polymers and the mass production of graphene contribute to the low‐cost fabrication of the π‐conjugated polymer/graphene composite materials. Based on the π‐conjugated system, a reduced π–π stacking distance between graphene and the polymer can be achieved, yielding enhanced charge‐transport properties. Owing to the incorporation of graphene, the composite material shows improved thermal stability. More generally, it is believed that the construction of the π‐conjugated composite shows clear possibility of integrating organic molecules and 2D materials into microstructure arrays for property‐by‐design fabrication of functional devices with large area, low cost, and high efficiency.  相似文献   

2.
Organic semiconductors based on π‐conjugated systems are the focus of considerable interest in the emerging area of soft or flexible photonics and electronics. Whereas in recent years the performances of devices such as organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs), or solar cells have undergone considerable progress, a number of technical and fundamental problems related to the low dimensionality of organic semiconductors based on linear π‐conjugated systems remain unsatisfactorily resolved. This low dimensionality results in an anisotropy of the optical and charge‐transport properties, which in turn implies a control of the material organization/molecular orientation during or after device fabrication. Such a constraint evidently represents a problem when device fabrication by solution‐based processes, such as printing techniques, is envisioned. The aim of this short Review is to illustrate possible alternative strategies based on the development of organic semiconductors with higher dimensionality, capable to exhibit isotropic electronic properties.  相似文献   

3.
Establishing the relationship between pressure and heat–electricity interconversion in van der Waals bonded small‐molecule organic semiconductors is critical not only in designing flexible thermoelectric materials, but also in developing organic electronics. Here, based on first‐principles calculations and using naphthalene as a case study, an unprecedented elevation of p‐type thermoelectric power factor induced by pressure is demonstrated; and the power factor increases by 267% from 159.5 µW m?1 K?2 under ambient conditions to 585.8 µW m?1 K?2 at 2.1 GPa. The underlying mechanism is attributed to the dramatic inhibition of lattice‐vibration‐caused electronic scattering. Furthermore, it is revealed that both restraining low‐frequency intermolecular vibrational modes and increasing intermolecular electronic coupling are two essential factors that effectively suppress the electron–phonon scattering. From the standpoint of molecular design, these two conditions can be achieved by extending the π‐conjugated backbones, introducing long alkyl sidechains to the π‐cores, and substituting heteroatoms in the π‐cores.  相似文献   

4.
Stretchable electronics are essential for the development of intensely packed collapsible and portable electronics, wearable electronics, epidermal and bioimplanted electronics, 3D surface compliable devices, bionics, prosthesis, and robotics. However, most stretchable devices are currently based on inorganic electronics, whose high cost of fabrication and limited processing area make it difficult to produce inexpensive, large‐area devices. Therefore, organic stretchable electronics are highly attractive due to many advantages over their inorganic counterparts, such as their light weight, flexibility, low cost and large‐area solution‐processing, the reproducible semiconductor resources, and the easy tuning of their properties via molecular tailoring. Among them, stretchable organic semiconductor devices have become a hot and fast‐growing research field, in which great advances have been made in recent years. These fantastic advances are summarized here, focusing on stretchable organic field‐effect transistors, light‐emitting devices, solar cells, and memory devices.  相似文献   

5.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.  相似文献   

6.
Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.  相似文献   

7.
Wafer‐scale fabrication of high‐performance uniform organic electronic materials is of great challenge and has rarely been realized before. Previous large‐scale fabrication methods always lead to different layer thickness and thereby poor film and device uniformity. Herein, the first demonstration of 4 in. wafer‐scale, uniform, and high‐performance n‐type polymer monolayer films is reported, enabled by controlling the multi‐level self‐assembly process of conjugated polymers in solution. Since the self‐assembly process happened in solution, the uniform 2D polymer monolayers can be facilely deposited on various substrates, and theoretically without size limitations. Polymer monolayer transistors exhibit high electron mobilities of up to 1.88 cm2 V?1 s?1, which is among the highest in n‐type monolayer organic transistors. This method allows to easily fabricate n‐type conjugated polymers with wafer‐scale, high uniformity, low contact resistance, and excellent transistor performance (better than the traditional spin‐coating method). This work provides an effective strategy to prepare large‐scale and uniform 2D polymer monolayers, which could enable the application of conjugated polymers for wafer‐scale sophisticated electronics.  相似文献   

8.
Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π‐conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self‐assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called “chiral electronics” is expected to gain wide popularity in the near future.  相似文献   

9.
π‐conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single‐molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single‐molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.  相似文献   

10.
The relative mobility of holes versus electrons in π‐conjugated materials is a long‐standing issue in the field of organic electronics. In this Progress Report, we first argue on the basis of theoretical considerations that in general organic semiconductors are intrinsically as good electron transporters as they are hole transporters. Then, in the light of selected experimental works, we discuss the origin of the features that prevent the observation of intrinsic electron transport, and the strategies that have been developed to promote ambipolar transport in field‐effect transistors.  相似文献   

11.
Growing demand in portable electronics raises a requirement to electronic devices being stretchable, deformable, and durable, for which functional polymers are ideal choices of materials. Here, the first transformable smart energy harvester and self‐powered mechanosensation sensor using shape memory polymers is demonstrated. The device is based on the mechanism of a flexible triboelectric nanogenerator using the thermally triggered shape transformation of organic materials for effectively harvesting mechanical energy. This work paves a new direction for functional polymers, especially in the field of mechanosensation for potential applications in areas such as soft robotics, biomedical devices, and wearable electronics.  相似文献   

12.
WOLEDs offer new design opportunities in practical solid‐state lighting and could play a significant role in reducing global energy consumption. Obtaining white light from organic LEDs is a considerable challenge. Alongside the development of new materials with improved color stability and balanced charge transport properties, major issues involve the fabrication of large‐area devices and the development of low‐cost manufacturing technology. This Review will describe the types of materials (small molecules and polymers) that have been used to fabricate WOLEDs. A range of device architectures are presented and appraised.  相似文献   

13.
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum‐based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low‐cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low‐cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics.  相似文献   

14.
The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D‐materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self‐assembly monolayers, and covalent organic frameworks. The protocols for 2D‐organic‐crystal‐fabrication and ‐patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented.  相似文献   

15.
Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light‐harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π‐conjugated polymers (P1–P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant‐free PSCs as hole‐transporting materials and additive‐free OSCs as photoactive donors, respectively. Especially, P3‐based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs.  相似文献   

16.
Noncovalent conformational locks are broadly employed to construct highly planar π‐conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen‐based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene‐based building block, 1,2‐diethoxy‐1,2‐bisselenylvinylene ( DESVS ), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution‐processable conjugated polymers are synthesized and implemented in organic thin‐film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS ‐based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V?1 s?1 (p‐type) and 0.65 cm2 V?1 s?1 (n‐type) in TFTs, and power conversion efficiency >5% in OPV cells.  相似文献   

17.
Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field‐effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge‐carrier mobilities exceeding 1 cm2 V?1 s?1 have been achieved. The most widely investigated molecules due to their n‐channel operation are perylene and naphthalene diimides, for which even values close to 10 cm2 V?1 s?1 have been demonstrated. The fact that all of these π‐conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo‐)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics.  相似文献   

18.
Next-generation wearable electronics will need to be mechanically flexible and stretchable such that they can be conformally attached onto the human body. Photodetectors that are available in today's market are based on rigid inorganic crystalline materials and they have limited mechanical flexibility. In contrast, photodetectors based on organic polymers and molecules have emerged as promising alternatives due to their inherent mechanical softness, ease of processing, tunable optoelectronic properties, good light sensing performance, and biocompatibility. Here, the recent advances of organic photodetectors in terms of both optoelectronic and mechanical properties are outlined and discussed, and their application in wearable electronics including health monitoring sensors, artificial vision, and self-powering integrated devices are highlighted.  相似文献   

19.
Air‐stable and soluble tetrabutylammonium fluoride (TBAF) is demonstrated as an efficient n‐type dopant for the conjugated polymer ClBDPPV. Electron transfer from F? anions to the π‐electron‐deficient ClBDPPV through anion–π electronic interactions is strongly corroborated by the combined results of electron spin resonance, UV–vis–NIR, and ultraviolet photoelectron spectroscopy. Doping of ClBDPPV with 25 mol% TBAF boosts electrical conductivity to up to 0.62 S cm?1, among the highest conductivities that have been reported for solution‐processed n‐type conjugated polymers, with a thermoelectric power factor of 0.63 µW m?1 K?2 in air. Importantly, the Seebeck coefficient agrees with recently published correlations to conductivity. Moreover, the F?‐doped ClBDPPV shows significant air stability, maintaining the conductivity of over 0.1 S cm?1 in a thick film after exposure to air for one week, to the best of our knowledge the first report of an air‐stable solution‐processable n‐doped conductive polymer with this level of conductivity. The result shows that using solution‐processable small‐anion salts such as TBAF as an n‐dopant of organic conjugated polymers possessing lower LUMO (lowest unoccupied molecular orbital), less than ?4.2 eV) can open new opportunities toward high‐performance air‐stable solution‐processable n‐type thermoelectric (TE) conjugated polymers.  相似文献   

20.
π‐Conjugated polymers show promise as active materials in application areas such as microelectronics, electro‐optics, opto‐electronics, and photonics. A critical feature in this emerging technology is device fabrication and the reproducible deposition of active material. This review focuses on current trends in the spatial deposition of conjugated polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号