首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline LaFeO3 was synthesized by calcining precursor La2(CO3)2(OH)2–Fe2O3?1.5H2O in air. XRD analysis showed that precursor dried at 80 °C was a mixture containing orthorhombic La2(CO3)2(OH)2 and amorphous Fe2O3?1.5H2O. Orthorhombic LaFeO3 with highly crystallization was obtained when La2(CO3)2(OH)2–Fe2O3?1.5H2O was calcined at 900 °C in air for 2 h. Magnetic characterization indicated that the calcined product at 900 °C behaved weak magnetic behavior at room temperature. The thermal process of La2(CO3)2(OH)2–Fe2O3?1.5H2O experienced five steps, which involves, at first, dehydration of 0.8 absorption water, then dehydration of 0.7 crystal water, decomposition of orthorhombic La2(CO3)2(OH)2 into orthorhombic LaCO3OH, reaction of two LaCO3OH into hexagonal La2O2CO3 and crystallization of tetragonal Fe2O3, at last, reaction of hexagonal La2O2CO3 with tetragonal Fe2O3 into orthorhombic LaFeO3. In the DTG curve, four DTG peaks indicated the precursor experienced mass loss of four steps.  相似文献   

2.
Compared to single metallic Ni or Co phosphides, bimetallic Ni–Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one‐step solvothermal process is proposed for the synthesis of bouquet‐like cobalt‐doped nickel phosphite (Ni11(HPO3)8(OH)6), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt‐doped Ni11(HPO3)8(OH)6 electrode presents a maximum specific capacitance of 714.8 F g?1. More significantly, aqueous and solid‐state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm?2 at the power density of 0.6 KW cm?2. The solid‐state device shows a high energy density of 14.72 mWh cm?2 at the power density of 0.6 KW cm?2. These excellent performances confirm that the cobalt‐doped Ni11(HPO3)8(OH)6 are promising materials for applications in electrochemical energy storage devices.  相似文献   

3.
Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double‐layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double‐layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4. More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2, showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L?1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on‐board applications.  相似文献   

4.
Developing low cost, long life, and high capacity rechargeable batteries is a critical factor towards developing next‐generation energy storage devices for practical applications. Therefore, a simple method to prepare graphene‐coated FeS2 embedded in carbon nanofibers is employed; the double protection from graphene coating and carbon fibers ensures high reversibility of FeS2 during sodiation/desodiation and improved conductivity, resulting in high rate capacity and long‐term life for Na+ (305.5 mAh g?1 at 3 A g?1 after 2450 cycles) and K+ (120 mAh g?1 at 1 A g?1 after 680 cycles) storage at room temperature. Benefitting from the enhanced conductivity and protection on graphene‐encapsulated FeS2 nanoparticles, the composites exhibit excellent electrochemical performance under low temperature (0 and ?20 °C), and temperature tolerance with stable capacity as sodium‐ion half‐cells. The Na‐ion full‐cells based on the above composites and Na3V2(PO4)3 can afford reversible capacity of 95 mAh g?1 at room temperature. Furthermore, the full‐cells deliver promising discharge capacity (50 mAh g?1 at 0 °C, 43 mAh g?1 at ?20 °C) and high energy density at low temperatures. Density functional theory calculations imply that graphene coating can effectively decrease the Na+ diffusion barrier between FeS2 and graphene heterointerface and promote the reversibility of Na+ storage in FeS2, resulting in advanced Na+ storage properties.  相似文献   

5.
Single crystals of sodium beta″ alumina (0.84Na2O·0.84MgO·5 Al2O3) undergo rapid ion exchange in concentrated sulfuric acid to produce “hydronium” beta alumina (0.84) H2O·0.84MgO·5Al2O3·2.8H2O). Hydronium beta″ alumina undergoes a partial, reversible dehydration between 250–300°C and irreversibly decomposes into alpha alumina and water above 700°C. The conductivity of hydronium beta″ alumina has been measured with blocking and non-blocking electrodes and is 5 × 10?3 (ohm cm)?1 at 25°C. The high conductivity is interpreted on the basis of a two dimensional liquid model.  相似文献   

6.
The utilization of antiferroelectric (AFE) materials is thought to be an effective approach to enhance the energy density of dielectric capacitors. However, the high energy dissipation and inferior reliability that are associated with the antiferroelectric–ferroelectric phase transition are the main issues that restrict the applications of antiferroelectric ceramics. Here, simultaneously achieving high energy density and efficiency in a dielectric ceramic is proposed by combining antiferroelectric and relaxor features. Based on this concept, a lead‐free dielectric (Na0.5Bi0.5)TiO3x(Sr0.7Bi0.2)TiO3 (NBT‐xSBT) system is investigated and the corresponding multilayer ceramic capacitors (MLCCs) are fabricated. A record‐high energy density of 9.5 J cm?3, together with a high energy efficiency of 92%, is achieved in NBT‐0.45SBT multilayer ceramic capacitors, which consist of ten dielectric layers with the single‐layer thickness of 20 µm and the internal electrode area of 6.25 mm2. Furthermore, the newly developed capacitor exhibits a wide temperature usage range of ‐60 to 120 °C, with an energy‐density variation of less than 10%, and satisfactory cycling reliability, with degradation of less than 8% over 106 cycles. These characteristics demonstrate that the NBT‐0.45SBT multilayer ceramic is a promising candidate for high‐power energy storage applications.  相似文献   

7.
High‐temperature sodium ion batteries (SIBs) have drawn significant heed recently for large‐scale energy storage. Yet, conventional SIBs are in the depths of inferior charge/discharge efficiency and cyclability at elevated temperatures. Rational structure design is highly desirable. Hence, a 3D hierarchical flower architecture self‐assembled by carbon‐coated Na3V2(PO4)3 (NVP) nanosheets (NVP@C‐NS‐FL) is fabricated via a microwave‐assisted glycerol‐mediated hydrothermal reaction combined with a post heat‐treatment. The growth mechanism of NVP@C‐NS‐FL is systematically investigated, by forming a microspherical glycerol/polyglycerol‐NVP complex initially and then converting into flower‐like architecture during the subsequent annealing at a low temperature ramping rate. Benefiting from the integrated structure, fast Na+ transportation, and highly effective heat transfer, the as‐obtained NVP@C‐NS‐FL exhibits an excellent high‐temperature SIB performance, e.g., 65 mAh g?1 (100 C) after 1000 cycles under 60 °C. When coupled with NaTi2(PO4)3 anode, the full cell can still display superior power capability of 1.4 kW kg?1 and long‐term cyclability (2000 cycles) under 60 °C.  相似文献   

8.
Metallic selenides have been widely investigated as promising electrode materials for metal‐ion batteries based on their relatively high theoretical capacity. However, rapid capacity decay and structural collapse resulting from the larger‐sized Na+/K+ greatly hamper their application. Herein, a bimetallic selenide (MoSe2/CoSe2) encapsulated in nitrogen, sulfur‐codoped hollow carbon nanospheres interconnected reduced graphene oxide nanosheets (rGO@MCSe) are successfully designed as advanced anode materials for Na/K‐ion batteries. As expected, the significant pseudocapacitive charge storage behavior substantially contributes to superior rate capability. Specifically, it achieves a high reversible specific capacity of 311 mAh g?1 at 10 A g?1 in NIBs and 310 mAh g?1 at 5 A g?1 in KIBs. A combination of ex situ X‐ray diffraction, Raman spectroscopy, and transmission electron microscopy tests reveals the phase transition of rGO@MCSe in NIBs/KIBs. Unexpectedly, they show quite different Na+/K+ insertion/extraction reaction mechanisms for both cells, maybe due to more sluggish K+ diffusion kinetics than that of Na+. More significantly, it shows excellent energy storage properties in Na/K‐ion full cells when coupled with Na3V2(PO4)2O2F and PTCDA@450 °C cathodes. This work offers an advanced electrode construction guidance for the development of high‐performance energy storage devices.  相似文献   

9.
High proton conductivity, of 3 × 10?4 ohm?1 cm?1 at 20°C, has been found in hydrated pressed discs of hydronium alunite, of formula (H3O)Al3(SO4)2(OH)6. The conduction occurs within the hydrated interparticle regions into which protons have been donated, probably from the H3O+ groups exposed on the crystal surfaces. The general utility of the membranes is discussed.  相似文献   

10.
The pollution caused by diesel-fuelled vehicles has become a subject of global concern. Presently, various separate technologies such as diesel oxidation catalyst, diesel particulate filter, selective catalytic reduction and ammonia selective catalytic reduction are used to control these pollutants. The four-way catalytic (FWC) system integrates all the separate control systems into a single compact unit. FWC technique using a combination of oxidation–reduction catalysts under various strategies has been investigated to simultaneously remove CO, HC, PM and NOx emitted from diesel engines. An oxidation catalyst (La0.6K0.4CoO3) was prepared by two different methods (sol–gel and co-precipitation). The reduction catalysts: Ag/Al2O3 and Cu-ZSM5 were synthesized by impregnation and ion-exchange method, respectively. The FWC was characterized by N2-sorption, X-ray diffraction, Fourier transform spectroscopy and scanning electron microscopy. The catalytic activities of FWC containing double-layer of catalysts were evaluated in a fixed-bed-tubular-reactor. The highest catalytic activity resulted by the two-layered system of La0.6K0.4CoO3 (sol–gel)?+?Cu-ZSM5 showing 100% NO conversion to N2 at 415°C, maximum-temperature of soot-combustion at 410°C, complete C3H8 conversion at 450°C and 100% CO conversion at 388°C. Maximum NO conversion was maintained up to 427°C; conversion started decreasing with further increase in temperature and 75.4% conversion remained up to 450°C. The performance of double-layered-catalytic-system was as follows: La0.6K0.4CoO3(sol–gel)?+?Cu-ZSM5?>?La0.6K0.4CoO3(sol–gel)?+?Ag/Al2O3?>?La0.6K0.4CoO3(co-ppt)?+?Ag/Al2O3?>?La0.6K0.4CoO3(co-ppt)?+?Cu-ZSM5.  相似文献   

11.
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm?3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm?1 versus 175 kV cm?1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.  相似文献   

12.
The major challenges faced by candidate electrode materials in lithium‐ion batteries (LIBs) include their low electronic and ionic conductivities. 2D van der Waals materials with good electronic conductivity and weak interlayer interaction have been intensively studied in the electrochemical processes involving ion migrations. In particular, molybdenum ditelluride (MoTe2) has emerged as a new material for energy storage applications. Though 2H‐MoTe2 with hexagonal semiconducting phase is expected to facilitate more efficient ion insertion/deinsertion than the monoclinic semi‐metallic phase, its application as an anode in LIB has been elusive. Here, 2H‐MoTe2, prepared by a solid‐state synthesis route, has been employed as an efficient anode with remarkable Li+ storage capacity. The as‐prepared 2H‐MoTe2 electrodes exhibit an initial specific capacity of 432 mAh g?1 and retain a high reversible specific capacity of 291 mAh g?1 after 260 cycles at 1.0 A g?1. Further, a full‐cell prototype is demonstrated by using 2H‐MoTe2 anode with lithium cobalt oxide cathode, showing a high energy density of 454 Wh kg?1 (based on the MoTe2 mass) and capacity retention of 80% over 100 cycles. Synchrotron‐based in situ X‐ray absorption near‐edge structures have revealed the unique lithium reaction pathway and storage mechanism, which is supported by density functional theory based calculations.  相似文献   

13.
Compositional interplay of two different cobalt phosphates (Co(H2PO4)2; Co‐DP and Co(PO3)2; Co‐MP) loaded on morphologically engineered high surface area nanocarbon leads to an increased electrocatalytic efficiency for oxygen evolution reaction (OER) in near neutral conditions. This is reflected as significant reduction in the onset overpotential (301 mV) and enhanced current density (30 mA cm?2 @ 577 mV). In order to achieve uniform surface loading, organic‐soluble thermolabile cobalt‐bis(di‐tert‐butylphosphate) is synthesized in situ inside the nanocarbon matrix and subsequently pyrolyzed at 150 °C to produce Co(H2PO4)2/Co(PO3)2 (80:20 wt%). Annealing this sample at 200 or 250 °C results in the redistribution of the two phosphate systems to 55:45 or 20:80 (wt%), respectively. Detailed electrochemical measurements clearly establish that the 55:45 (wt%) sample prepared at 200 °C performs the best as a catalyst, owing to a relay mechanism that enhances the kinetics of the 4e? transfer OER process, which is substantiated by micro‐Raman spectroscopic studies. It is also unraveled that the engineered nanocarbon support simultaneously enhances the interfacial charge‐transfer pathway, resulting in the reduction of onset overpotential, compared to earlier investigated cobalt phosphate systems.  相似文献   

14.
The formation and stability of the intercalation compound Fe(C5H5)+2(6FeOCl)e? have been studied by thermogravimetry, X-ray diffraction measurements and Mössbauer spectro-scopy. After reaction times of one week above 80°C side reactions are observed such as chlorination of the guest species and formation of α-Fe2O3 phases. A high-temperature intermediate phase with almost unchanged stoichiometry but with magnetically partly ordered Fe3+ host lattice is observed when the intercalation compound is produced by vapour transport of Fe(C5H5)2 at 100 – 110°C. The ferricinium intercalate Fe(C5H5)+2(6FeOCl)e? is stable only up to temperatures of about 60°C.  相似文献   

15.
Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g?1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.  相似文献   

16.
Precursor of nanocrystalline LaMnO3 was synthesized by solid-state reaction at low heat using La(NO3)3·6H2O, MnSO4·H2O, and Na2CO3·10H2O as raw materials. XRD analysis showed that precursor was a mixture containing orthorhombic La2(CO3)3·8H2O and rhombohedral MnCO3. When the precursor was calcined at 800 °C for 2 h, pure phase LaMnO3 with rhombohedral structure was obtained. Magnetic characterization indicated that rhombohedral LaMnO3 behaved weak magnetic properties. The thermal process of the precursor experienced four steps, which involved the dehydration of crystallization water at first, and then decomposition of manganese carbonate into MnO2, and decomposition of La2(CO3)3 and MnO2 together into La2O2CO3 and Mn2O3, and lastly reaction of monoclinic La2O2CO3 with Mn2O3 and formation of rhombohedral LaMnO3. Based on the Kissinger equation, the value of the activation energy associated with the formation of rhombohedral LaMnO3 was determined to be 260 kJ mol?1. The value of the Avrami exponent, n, was equal to 1.68, which suggested that crystallization process of LaMnO3 was the random nucleation and growth of nuclei reaction.  相似文献   

17.
2D materials have played an important role in electronics, sensors, optics, electrocatalysis, and energy storage. Many methods for the preparation of 2D materials have been explored. It is crucial to develop a high‐yield, rapid, and low‐temperature method to synthesize 2D materials. A general, fast (5 min), and low‐temperature (≈100 °C) salt (CoCl2·6H2O)‐templated method is proposed to prepare series of 2D metal oxides/oxychlorides/hydroxides in large scale, such as MoO3, SnO2, SiO2, BiOCl, Sb4O5Cl2, Zn2Co3(OH)10 2H2O, and ZnCo2O4. The as‐synthesized 2D materials possess an ultrathin feature (2–7 nm) and large aspect ratios. Additionally, these 2D metal oxides/oxychlorides/hydroxides exhibit good electrochemical properties in energy storage (lithium/sodium‐ion batteries) and electrocatalysis (hydrogen/oxygen evolution reaction).  相似文献   

18.
Aqueous zinc‐ion batteries are promising candidates for grid‐scale energy storage because of their intrinsic safety, low cost, and high energy intensity. However, lack of suitable cathode materials with both excellent rate performance and cycling stability hinders further practical application of aqueous zinc‐ion batteries. Here, a nanoflake‐self‐assembled nanorod structure of Ca0.28MnO2·0.5H2O as Zn‐insertion cathode material is designed. The Ca0.28MnO2·0.5H2O exhibits a reversible capacity of 298 mAh g?1 at 175 mA g?1 and long‐term cycling stability over 5000 cycles with no obvious capacity fading, which indicates that the per‐insertion of Ca ions and water can significantly improve reversible insertion/extraction stability of Zn2+ in Mn‐based layered type material. Further, its charge storage mechanism, especially hydrogen ions, is elucidated. A comprehensive study suggests that the intercalation of hydrogen ions in the first discharge plat is controled by both pH value and type of anion of electrolyte. Further, it can stabilize the Ca0.28MnO2·0.5H2O cathode and facilitate the following insertion of Zn2+ in 1 m ZnSO4/0.1 m MnSO4 electrolyte. This work can enlighten and promote the development of high‐performance rechargeable aqueous zinc‐ion batteries.  相似文献   

19.
Dielectric constant (ɛ), dielectric loss (tan δ) and conductivity (σ) for K2Zn2(SO4)3 and (NH4)2 Mg2(SO4)3 have been measured over the frequency range 100 Hz — 100 kHz and in temperature range 30°C — 400°C. The values of static dielectric constant at room temperature are 7.67 and 4.80 for K2Zn2(SO4)3 and (NH4)2 Mg2(SO4)3 respectively. The plots of log σ against reciprocal temperature at different frequencies of these samples merge into a straight line beyond 250°C and the activation energies calculated in this region are found to be 0.67 eV and 1.98 eV for K2Zn2(SO4)3 and (NH4)2 Mg2(SO4)3 respectively.  相似文献   

20.
Prussian blue analogs exhibit great promise for applications in aqueous rechargeable sodium‐ion batteries (ARSIBs) due to their unique open framework and well‐defined discharge voltage plateau. However, traditional coprecipitation methods cannot prepare self‐standing electrodes to meet the needs of wearable energy storage devices. In this work, a water bath method is reported to grow microcube‐like K2Zn3(Fe(CN)6)2·9H2O on carbon cloth (CC) using Zn nanosheet arrays as the zinc source and reducing agent, directly serving as a self‐standing cathode. Benefiting from fast ion diffusion and high conductivity, the cathode delivers a high areal capacity of 0.76 mAh cm?2 at 0.5 mA cm?2 and excellent capacity retention of 57.9% as the current density increases to 20 mA cm?2. By coupling with NaTi2(PO4)3 grown on CC as an anode, a quasi‐solid‐state flexible ARSIB with a high output voltage plateau of 1.6 V is successfully assembled, exhibiting a superior areal capacity of 0.56 mAh cm?2 and energy density of 0.92 mWh cm?2. In particular, the device shows admirable mechanical flexibility, maintaining 90.3% of initial capacity after 3000 bending cycles. This work is anticipated to open a new avenue for the rational design of self‐standing electrodes used in high‐voltage flexible ARSIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号