首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise control over the assembly of anisotropic plasmonic gold nanostructures with relative spatial directionality and sequence asymmetry remains a major challenge and offers great fundamental insight and optical application possibilities. Here, a novel strategy is developed to anisotropically functionalize gold nanorods (AuNRs) by using a DNA‐origami‐based precise machine to transfer essential DNA sequence configurations to the surface of the AuNRs through an intentionally designed toehold‐initiated displacement reaction. Different AuNR products are examined via hybridization with DNA‐AuNPs that display distinct elements of regiospecificity. These assembled anisotropic plasmonic gold nanostructures based on the DNA‐origami precise machine inherit the encoded information from the parent platform with high fidelity and show fixed orientation and bonding anisotropy, thereby generating discrete plasmonic nanostructures with enhanced Raman resonance.  相似文献   

2.
Colloidal crystal engineering with DNA on template‐confined surfaces is used to prepare arrays of nanocube‐based plasmonic antennas and deliberately place dyes with sub‐nm precision into their hotspots, on the DNA bonds that confine the cubes to the underlying gold substrate. This combined top‐down and bottom‐up approach provides independent control over both the plasmonic gap and photonic lattice modes of the surface‐confined particle assemblies and allows for the tuning of the interactions between the excited dyes and plasmonically active antennas. Furthermore, the gap mode of the antennas can be modified in situ by utilizing the solvent‐dependent structure of the DNA bonds. This is studied by placing two dyes, with different emission wavelengths, under the nanocubes and recording their solvent‐dependent emission. It is shown that dye emission not only depends upon the in‐plane structure of the antennas but also the size of the gap, which is regulated with solvent. Importantly, this approach allows for the systematic understanding of the relationship between nanoscale architecture and plasmonically coupled dye emission, and points toward the use of colloidal crystal engineering with DNA to create stimuli responsive architectures, which can find use in chemical sensing and tunable light sources.  相似文献   

3.
Noble metal nanoparticles have attracted much interest in the heterogeneous catalysis. Particularly, efficient manipulation of the responsive catalytic properties of the metal nanoparticles is an interesting topic. In this work, a simple and efficient strategy is developed to regulate the pH‐responsive catalytic activities of glucose oxidase (GOx)‐mimicking gold nanoparticles (AuNPs). Four DNA strands (regulating strands) that differ slightly in sequences are used to interact non‐covalently with citrate‐capped AuNPs, resulting in markedly distinct pH‐dependent catalytic behavior of AuNPs. This is ascribed to the characteristic pH‐induced conformational change of the DNA strands that leads to the different adsorption capability to the NPs surface, as demonstrated by pH‐CD profiles of the respective DNA molecules. The pH‐dependent catalysis of AuNPs is also encoded with structural information of the double‐stranded DNA (including regulating strands and their complementary strands) that has conformation resistant or responsive to pH change. As a result, the catalysis can be programmed into an AND gate, a XNOR gate or a NOT gate, using pH and complementary strand as the inputs, the nanoparticle activity as the output and the regulating strands as the programs. This work can be expanded by engineering the catalytic behavior of noble metal nanoparticles to respond smartly to a variety of environmental stimuli, such as metal ions or light wavelengths. These results may provide insight into understanding ligand‐regulated nanometallic catalysis.  相似文献   

4.
A combination of three innovative materials within one hybrid structure to explore the synergistic interaction of their individual properties is presented. The unique electronic, mechanical, and thermal properties of graphene are combined with the plasmonic properties of gold nanoparticle (AuNP) dimers, which are assembled using DNA origami nanostructures. This novel hybrid structure is characterized by means of correlated atomic force microscopy and surface‐enhanced Raman scattering (SERS). It is demonstrated that strong interactions between graphene and AuNPs result in superior SERS performance of the hybrid structure compared to their individual components. This is particularly evident in efficient fluorescence quenching, reduced background, and a decrease of the photobleaching rate up to one order of magnitude. The versatility of DNA origami structures to serve as interface for complex and precise arrangements of nanoparticles and other functional entities provides the basis to further exploit the potential of the here presented DNA origami–AuNP dimer–graphene hybrid structures.  相似文献   

5.
Recent years have seen increasing interest in the construction of nanoscopically layered materials involving aqueous‐based sequential assembly of polymers on solid substrates. In the booming research area of layer‐by‐layer (LbL) assembly of oppositely charged polymers, self‐assembly driven by hydrogen bond formation emerges as a powerful technique. Hydrogen‐bonded (HB) LbL materials open new opportunities for LbL films, which are more difficult to produce than their electrostatically assembled counterparts. Specifically, the new properties associated with HB assembly include: 1) the ease of producing films responsive to environmental pH at mild pH values, 2) numerous possibilities for converting HB films into single‐ or two‐component ultrathin hydrogel materials, and 3) the inclusion of polymers with low glass transition temperatures (e.g., poly(ethylene oxide)) within ultrathin films. These properties can lead to new applications for HB LbL films, such as pH‐ and/or temperature‐responsive drug delivery systems, materials with tunable mechanical properties, release films dissolvable under physiological conditions, and proton‐exchange membranes for fuel cells. In this report, we discuss the recent developments in the synthesis of LbL materials based on HB assembly, the study of their structure–property relationships, and the prospective applications of HB LbL constructs in biotechnology and biomedicine.  相似文献   

6.
Gold–polymer hybrid nanoparticles attract wide interest as building blocks for the engineering of photonic materials and plasmonic (active) metamaterials with unique optical properties. In particular, the coupling of the localized surface plasmon resonances of individual metal nanostructures in the presence of nanometric gaps can generate highly enhanced and confined electromagnetic fields, which are frequently exploited for metal‐enhanced light–matter interactions. The optical properties of plasmonic structures can be tuned over a wide range of properties by means of their geometry and the size of the inserted nanoparticles as well as by the degree of order upon assembly into 1D, 2D, or 3D structures. Here, the synthesis of silica‐stabilized gold–poly(N‐isopropylacrylamide) (SiO2‐Au‐PNIPAM) core–satellite superclusters with a narrow size distribution and their incorporation into ordered self‐organized 3D assemblies are reported. Significant alterations of the plasmon resonance are found for different assembled structures as well as strongly enhanced Raman signatures are observed. In a series of experiments, the origin of the highly enhanced signals can be assigned to the interlock areas of adjacent SiO2‐Au‐PNIPAM core–satellite clusters and their application for highly sensitive nanoparticle‐enhanced Raman spectroscopy is demonstrated.  相似文献   

7.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

8.
Deterministic assembly of nanoparticles with programmable patterns is a core opportunity for property‐by‐design fabrication and large‐scale integration of functional materials and devices. The wet‐chemical‐synthesized colloidal nanocrystals are compatible with solution assembly techniques, thus possessing advantages of high efficiency, low cost, and large scale. However, conventional solution process suffers from tradeoffs between spatial precision and long‐range order of nanocrystal assembly arising from the uncontrollable dewetting dynamics and fluid flow. Here, a capillary‐bridge manipulation method is demonstrated for directing the dewetting of nanocrystal inks and deterministically patterning long‐range‐ordered superlattice structures. This is achieved by employing micropillars with programmable size, arrangement, and shape, which permits deterministic manipulation of geometry, position, and dewetting dynamics of capillary bridges. Various superlattice structures, including one‐dimensional (1D), circle, square, pentagon, hexagon, pentagram, cross arrays, are fabricated. Compared to the glassy thin films, long‐range‐ordered superlattice arrays exhibit improved ferroelectric polarization. Coassembly of nanocrystal superlattice and organic functional molecule is further demonstrated. Through introducing azobenzene into superlattice arrays, a switchable ferroelectric polarization is realized, which is triggered by order–disorder transition of nanocrystal stacking in reversible isomerization process of azobenzene. This method offers a platform for patterning nanocrystal superlattices and fabricating microdevices with functionalities for multiferroics, electronics, and photonics.  相似文献   

9.
Self‐assembled cobalt particle arrays are formed by annealing, which cause agglomeration (dewetting) of thin Co films on oxidized silicon substrates that are topographically prepatterned with an array of 200‐nm‐period pits. The Co nanoparticle size and uniformity are related to the initial film thickness, annealing temperature, and template geometry. One particle per 200‐nm‐period pit is formed from a 15‐nm film annealed at 850 °C; on a smooth substrate, the same annealing process forms particles with an average interparticle distance of 200 nm. Laser annealing enables templated dewetting of 5‐nm‐thick films to give one particle per pit. Although the as‐deposited films exhibit a mixture of hexagonal close‐packed and face‐centered cubic (fcc) phases, the ordered cobalt particles are predominantly twinned fcc crystals with weak magnetic anisotropy. Templated dewetting is shown to provide a method for forming arrays of nanoparticles with well‐controlled sizes and positions.  相似文献   

10.
Achieving control over formation of molecular films on insulating substrates is important for designing novel 2D functional materials and devices. To study the main factors governing successful control, organic molecules with interchangeable polar functional groups, a variable length aromatic body, and flexible hydrocarbon chains are designed, synthesized and then deposited on the (001) surfaces of bulk sodium chloride, potassium chloride, and rubidium chloride. The deposited structures are imaged using noncontact atomic force microscopy and modeled using density functional theory. The results show that it is possible to form large‐scale, highly ordered, 2D, porous molecular domains (>104 pores), which are stable at room temperature, and to control the size of the 2D pores. Alternatively, it is possible to form line structures or droplets (through molecular dewetting) by altering the molecular structure or changing the substrate lattice constant. Theoretical calculations explain the balance of the molecule–molecule and molecule–surface interactions and the structure and thermodynamic stability of the grown films.  相似文献   

11.
Owing to inherent 2D structure, marvelous mechanical, electrical, and thermal properties, graphene has great potential as a macroscopic thin film for surface coating, composite, flexible electrode, and sensor. Nevertheless, the production of large‐area graphene‐based thin film from pristine graphene dispersion is severely impeded by its poor solution processability. In this study, a robust wetting‐induced climbing strategy is reported for transferring the interfacially assembled large‐area ultrathin pristine graphene film. This strategy can quickly convert solvent‐exfoliated pristine graphene dispersion into ultrathin graphene film on various substrates with different materials (glass, metal, plastics, and cloth), shapes (film, fiber, and bulk), and hydrophobic/hydrophilic patterns. It is also applicable to nanoparticles, nanofibers, and other exfoliated 2D nanomaterials for fabricating large‐area ultrathin films. Alternate climbing of different ultrathin nanomaterial films allows a layer‐by‐layer transfer, forming a well‐ordered layered composite film with the integration of multiple pristine nanomaterials at nanometer scale. This powerful strategy would greatly promote the development of solvent‐exfoliated pristine nanomaterials from dispersions to macroscopic thin film materials.  相似文献   

12.
2D mesoporous materials fabricated via the assembly of nanoparticles (NPs) not only possess the unique properties of nanoscale building blocks but also manifest additional collective properties due to the interactions between NPs. In this work, reported is a facile and designable way to prepare free‐standing 2D mesoporous gold (Au) superstructures with a honeycomb‐like configuration. During the fabrication process, Au NPs with an average diameter of 5.0 nm are assembled into a superlattice film on a diethylene glycol substrate. Then, a subsequent thermal treatment at 180 °C induces NP attachment, forming the honeycomb‐like ordered mesoporous Au superstructures. Each individual NP connects with three neighboring NPs in the adjacent layer to form a tetrahedron‐based framework. Mesopores confined in the superstructure have a uniform size of 3.5 nm and are arranged in an ordered hexagonal array. The metallic bonding between Au NPs increases the structural stability of architected superstructures, allowing them to be easily transferred to various substrates. In addition, electron energy‐loss spectroscopy experiments and 3D finite‐difference time‐domain simulations reveal that electric field enhancement occurs at the confined mesopores when the superstructures are excited by light, showing their potential in nano‐plasmonic applications.  相似文献   

13.
The extensive use of gold nanoparticles (AuNPs) in nanomedicine, especially for intracellular imaging, photothermal therapy, and drug delivery, has necessitated the study of how functionalized AuNPs engage with living biological interfaces like the mammalian cell. Nanoparticle size, shape, surface charge, and surface functionality can affect the accumulation of functionalized AuNPs in cells. Confocal microscopy, flow cytometry, and inductively coupled plasma mass spectrometry demonstrate that CaSki cells, a human cervical cancer cell line, internalize AuNPs functionalized with hairpin, single stranded, and double stranded DNA differently. Surface charge and DNA conformation are shown to have no effect on the cell‐nanoparticle interaction. CaSki cells accumulate small DNA‐AuNPs in greater quantities than large DNA‐AuNPs, demonstrating that size is the major contributor to cellular uptake properties. These data suggest that DNA‐AuNPs can be easily tailored through modulation of size to design functional AuNPs with optimal cellular uptake properties and enhanced performance in nanomedicine applications.  相似文献   

14.
Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light–matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross‐section of 2D‐TMDs inhibits the light–matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D‐TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D‐TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D‐TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon‐enhanced interaction in 2D‐TMDs is briefly described and state‐of‐the‐art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.  相似文献   

15.
In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge–transfer interaction and supra‐amphiphile self‐assembling in aqueous phase. The charge–transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger‐transfer absorption. 1H NMR and electrospray ionizsation mass spectrometry (ESI‐MS) analyses also indicate supra‐amphiphiles are formed by the combination of TTFs and MVs head group through charge–transfer interaction and Coulombic force. X‐ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra‐amphiphile‐driven organic‐AuNPs assembly system. AuNPs could be assembled into 1D–3D structures by adding different amount of MVs.  相似文献   

16.
Nanoscale manipulation of magnetic fields has been a long‐term pursuit in plasmonics and metamaterials, as it can enable a range of appealing optical properties, such as high‐sensitivity circular dichroism, directional scattering, and low‐refractive‐index materials. Inspired by the natural magnetism of aromatic molecules, the cyclic ring cluster of plasmonic nanoparticles (NPs) has been suggested as a promising architecture with induced unnatural magnetism, especially at visible frequencies. However, it remains challenging to assemble plasmonic NPs into complex networks exhibiting strong visible magnetism. Here, a DNA‐origami‐based strategy is introduced to realize molecular self‐assembly of NPs forming complex magnetic architectures, exhibiting emergent properties including anti‐ferromagnetism, purely magnetic‐based Fano resonances, and magnetic surface plasmon polaritons. The basic building block, a gold NP (AuNP) ring consisting of six AuNP seeds, is arranged on a DNA origami frame with nanometer precision. The subsequent hierarchical assembly of the AuNP rings leads to the formation of higher‐order networks of clusters and polymeric chains. Strong emergent plasmonic properties are induced by in situ growth of silver upon the AuNP seeds. This work may facilitate the development of a tunable and scalable DNA‐based strategy for the assembly of optical magnetic circuitry, as well as plasmonic metamaterials with high fidelity.  相似文献   

17.
Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D‐GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D‐GNAs. The reported studies focus on the synthesis of 1D‐GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar‐like GNAs (CL‐GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL‐GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL‐GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL‐GNAs have a low cytotoxicity and good biocompatibility. The CL‐GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging.  相似文献   

18.
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.  相似文献   

19.
High‐efficient charge and energy transfer between nanocrystals (NCs) in a bottom‐up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film‐scale NCs superlattices at solid–liquid interfaces. Owing to the Au‐based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68–13.37 W cm?2), to control Au‐based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale‐up and formation at solid–liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near‐infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)‐active substrates.  相似文献   

20.
Directional solution coating by the Chinese brush provides a facile approach to fabricate highly oriented polymer thin films by finely controlling the wetting and dewetting processes under directional stress. The biggest advantage of the Chinese brush over the normal western brush is the freshly emergent hairs used, whose unique tapered structure renders a dynamic balance of the liquid within the brush by multiple forces when interacting with the liquid. Consequently, the liquid is steadily held within the brush without any unexpected leakage, making the liquid transfer proceed in a well‐controllable manner. It is demonstrated that the Chinese brush coating enables the crystallization of the polymer and the self‐assembly of conjugated backbones to proceed in a quasi‐steady state via a certain direction, which is attributed to the controllable receding of the three‐phase contact line during the dewetting process by the multiple parallel freshly emergent hairs. The as‐prepared polymer thin films exhibit over six times higher charge‐carrier mobility compared to the spin‐coated films, which therefore provides a general approach for high‐performance organic thin‐film transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号