首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical bottleneck limiting the performance of rechargeable zinc–air batteries lies in the inefficient bifunctional electrocatalysts for the oxygen reduction and evolution reactions at the air electrodes. Hybridizing transition‐metal oxides with functional graphene materials has shown great advantages due to their catalytic synergism. However, both the mediocre catalytic activity of metal oxides and the restricted 2D mass/charge transfer of graphene render these hybrid catalysts inefficient. Here, an effective strategy combining anion substitution, defect engineering, and the dopant effect to address the above two critical issues is shown. This strategy is demonstrated on a hybrid catalyst consisting of sulfur‐deficient cobalt oxysulfide single crystals and nitrogen‐doped graphene nanomeshes (CoO0.87S0.13/GN). The defect chemistries of both oxygen‐vacancy‐rich, nonstoichiometric cobalt oxysulfides and edge‐nitrogen‐rich graphene nanomeshes lead to a remarkable improvement in electrocatalytic performance, where CoO0.87S0.13/GN exhibits strongly comparable catalytic activity to and much better stability than the best‐known benchmark noble‐metal catalysts. In application to quasi‐solid‐state zinc–air batteries, CoO0.87S0.13/GN as a freestanding catalyst assembly benefits from both structural integrity and enhanced charge transfer to achieve efficient and very stable cycling operation over 300 cycles with a low discharge–charge voltage gap of 0.77 V at 20 mA cm?2 under ambient conditions.  相似文献   

2.
Large‐scale application of renewable energy and rapid development of electric vehicles have brought unprecedented demand for advanced energy‐storage/conversion technologies and equipment. Rechargeable zinc (Zn)–air batteries represent one of the most promising candidates because of their high energy density, safety, environmental friendliness, and low cost. The air electrode plays a key role in managing the many complex physical and chemical processes occurring on it to achieve high performance of Zn–air batteries. Herein, recent advances of air electrodes from bifunctional catalysts to architectures are summarized, and their advantages and disadvantages are discussed to underline the importance of progress in the evolution of bifunctional air electrodes. Finally, some challenges and the direction of future research are provided for the optimized design of bifunctional air electrodes to achieve high performance of rechargeable Zn–air batteries.  相似文献   

3.
With the extensive research and development of renewable energy technologies, there is an increasing interest in developing metal‐free carbons as a new class of bifunctional electrocatalysts for boosting the performance of metal–air batteries. Along with significant understanding of the electrocatalytic nature and the rapid development of techniques, the activities of carbon electrocatalysts are well‐tailored by introducing particular dopants/defects and structure regulation. Herein, the recent advances regarding the rational design of carbon‐based electrocatalysts for the oxygen reduction reaction and oxygen evolution reaction are summarized, with a special focus on the bifunctional applications in Zn–air and Li–air batteries. Specifically, the atomic modulation strategies to regulate the electrocatalytic activities of carbons and structure modification are summarized to gain deep insights into bifunctional mechanisms and boost advanced Zn–air and Li–air batteries. The current challenges and future perspectives are also addressed to accelerate the exploration of promising bifunctional carbon catalysts for renewable energy technologies, particularly metal–air batteries.  相似文献   

4.
High‐performance bifunctional oxygen electrocatalysis constitutes the key technique for the widespread application of clean and sustainable energy through electrochemical devices such as rechargeable Zn–air batteries. Single‐atom electrocatalysts with maximum atom efficiency are highly considered as an alternative of the present noble‐metal‐based electrocatalysts. However, the fabrication of transition metal single‐atoms is very challenging, requiring extensive attempts of precursors with novel design principles. Herein, an all‐covalently constructed cobalt‐coordinated framework porphyrin with graphene hybridization is innovatively designed and prepared as the pyrolysis precursor to fabricate single‐atom Co–Nx–C electrocatalysts. Excellent electrochemical performances are realized for both bifunctional oxygen electrocatalysis and rechargeable Zn–air batteries with regard to reduced overpotentials, improved kinetics, and prolonged cycling stability comparable with noble‐metal‐based electrocatalysts. Design principles from multiple scales are proposed and rationalized with detailed mechanism investigation. This work not only provides a novel precursor for the fabrication of high‐performance single‐atom electrocatalysts, but also inspires further attempts to develop advanced materials and emerging applications.  相似文献   

5.
An efficient and low‐cost electrocatalyst for reversible oxygen electrocatalysis is crucial for improving the performance of rechargeable metal?air batteries. Herein, a novel oxygen vacancy–rich 2D porous In‐doped CoO/CoP heterostructure (In‐CoO/CoP FNS) is designed and developed by a facile free radicals–induced strategy as an effective bifunctional electrocatalyst for rechargeable Zn–air batteries. The electron spin resonance and X‐ray absorption near edge spectroscopy provide clear evidence that abundant oxygen vacancies are formed in the interface of In‐CoO/CoP FNS. Owing to abundant oxygen vacancies, porous heterostructure, and multiple components, In‐CoO/CoP FNS exhibits excellent oxygen reduction reaction activity with a positive half‐wave potential of 0.81 V and superior oxygen evolution reaction activity with a low overpotential of 365 mV at 10 mA cm?2. Moreover, a home‐made Zn–air battery with In‐CoO/CoP FNS as an air cathode delivers a large power density of 139.4 mW cm?2, a high energy density of 938 Wh kgZn?1, and can be steadily cycled over 130 h at 10 mA cm?2, demonstrating great application potential in rechargeable metal–air batteries.  相似文献   

6.
Flexible solid‐state Zn–air batteries have been rapidly developed benefiting from the uprising demand for wearable electronic devices, wherein the air electrode integrated with efficient bifunctional oxygen electrocatalysts plays an important role to achieve high performance. Binder‐free self‐supported bifunctional catalysts can provide large active surface area, fast electron transport path, easy ion diffusion, and excellent structural stability and flexibility, thus acting as promising flexible air cathodes. In this review, recent advances on the application of nanoarrayed electrocatalysts as air cathodes in flexible Zn–air batteries are reviewed. Especially, various types of bifunctional oxygen electrocatalysts, including carbonaceous material arrays, transition metal compound arrays, transition metal/carbon arrays, transition metal compound/carbon arrays, and other hybrid arrays, are discussed. The applications of flexible Zn–air batteries with two configurations (i.e., planar stacks and cable fibers) are also introduced. Finally, perspectives on the optimization of arrayed air cathodes for future development to achieve high‐performance flexible Zn–air batteries are shared.  相似文献   

7.
Over the past decade, the surging interest for higher‐energy‐density, cheaper, and safer battery technology has spurred tremendous research efforts in the development of improved rechargeable zinc–air batteries. Current zinc–air batteries suffer from poor energy efficiency and cycle life, owing mainly to the poor rechargeability of zinc and air electrodes. To achieve high utilization and cyclability in the zinc anode, construction of conductive porous framework through elegant optimization strategies and adaptation of alternate active material are employed. Equally, there is a need to design new and improved bifunctional oxygen catalysts with high activity and stability to increase battery energy efficiency and lifetime. Efforts to engineer catalyst materials to increase the reactivity and/or number of bifunctional active sites are effective for improving air electrode performance. Here, recent key advances in material development for rechargeable zinc–air batteries are described. By improving fundamental understanding of materials properties relevant to the rechargeable zinc and air electrodes, zinc–air batteries will be able to make a significant impact on the future energy storage for electric vehicle application. To conclude, a brief discussion on noteworthy concepts of advanced electrode and electrolyte systems that are beyond the current state‐of‐the‐art zinc–air battery chemistry, is presented.  相似文献   

8.
Proper design and simple preparation of nonnoble bifunctional electrocatalysts with high cost performance and strong durability for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is highly demanded but still full of enormous challenges. In this work, a spontaneous gas‐foaming strategy is presented to synthesize cobalt nanoparticles confined in 3D nitrogen‐doped porous carbon foams (CoNCF) by simply carbonizing the mixture of citric acid, NH4Cl, and Co(NO3)2·6H2O. Thanks to its particular 3D porous foam architecture, ultrahigh specific surface area (1641 m2 g?1), and homogeneous distribution of active sites (C–N, Co–Nx, and Co–O moieties), the optimized CoNCF‐1000‐80 (carbonized at 1000 °C, containing 80 mg Co(NO3)2·6H2O in precursors) catalyst exhibits a remarkable bifunctional activity and long‐term durability toward both ORR and OER. Its bifunctional activity parameter (ΔE) is as low as 0.84 V, which is much smaller than that of noble metal catalyst and comparable to state‐of‐the‐art bifunctional catalysts. When worked as an air electrode catalyst in rechargeable Zn–air batteries, a high energy density (797 Wh kg?1), a low charge/discharge voltage gap (0.75 V), and a long‐term cycle stability (over 166 h) are achieved at 10 mA cm?2.  相似文献   

9.
10.
Metal oxides of earth‐abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy‐conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three‐stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N‐doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5Co0.5Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec?1 and an overpotential of 257 mV for 10 mA cm?2 and superior ORR activity with a large limiting current density of ?5.25 mA cm?2 at 0.6 V. A fabricated Zn–air battery delivers a specific capacity of 756 mA h gZn?1 (corresponding to an energy density of 904 W h kgZn?1), a peak power density of 86 mW cm?2 and can be cycled over 120 h at 10 mA cm?2. Other two amorphous bimetallic, Ni0.4Fe0.6Ox and Ni0.33Co0.67Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.  相似文献   

11.
12.
13.
Highly efficient and stable bifunctional electrocatalysts for oxygen reduction and evolution are essential for aqueous rechargeable Zn–air batteries, which require highly active sites as well as delicate structural design for increasing effective active sites and facilitating mass/electron transfer. Herein, a scalable and facile self‐catalyzed growth strategy is developed to integrate highly active Co–N–C sites with 3D brush‐like nanostructure, achieving Co–N–C nanobrushes with Co,N‐codoped carbon nanotube branches grown on Co,N‐codoped nanoparticle assembled nanowire backbones. Systematic investigations suggest that nanobrushes deliver significantly improved electrocatalytic activity compared with nanowire or nanotube counterparts and the longer nanotube branches give the better performance. Benefiting from the increase of accessible highly active sites and enhanced mass transfer and electron transportation, the present Co–N–C nanobrush exhibits superior electrocatalytic activity and durability when used as a bifunctional oxygen catalyst. It enables a rechargeable Zn–air battery with a high peak power density of 246 mW cm?2 and excellent cycling stability. These results suggest that the reported synthetic strategy may open up possibilities for exploring efficient electrocatalysts for diverse applications.  相似文献   

14.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

15.
16.
Iron–nitrogen–carbon materials (Fe–N–C) are known for their excellent oxygen reduction reaction (ORR) performance. Unfortunately, they generally show a laggard oxygen evolution reaction (OER) activity, which results in a lethargic charging performance in rechargeable Zn–air batteries. Here porous S‐doped Fe–N–C nanosheets are innovatively synthesized utilizing a scalable FeCl3‐encapsulated‐porphyra precursor pyrolysis strategy. The obtained electrocatalyst exhibits ultrahigh ORR activity (E1/2 = 0.84 V vs reversible hydrogen electrode) and impressive OER performance (Ej = 10 = 1.64 V). The potential gap (ΔE = Ej = 10 ? E1/2) is 0.80 V, outperforming that of most highly active bifunctional electrocatalysts reported to date. Furthermore, the key role of S involved in the atomically dispersed Fe–Nx species on the enhanced ORR and OER activities is expounded for the first time by ultrasound‐assisted extraction of the exclusive S source (taurine) from porphyra. Moreover, the assembled rechargeable Zn–air battery comprising this bifunctional electrocatalyst exhibits higher power density (225.1 mW cm?2) and lower charging–discharging overpotential (1.00 V, 100 mA cm?2 compared to Pt/C + RuO2 catalyst). The design strategy can expand the utilization of earth‐abundant biomaterial‐derived catalysts, and the mechanism investigations of S doping on the structure–activity relationship can inspire the progress of other functional electrocatalysts.  相似文献   

17.
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium–sulfur batteries, and metal–air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.  相似文献   

18.
Hydrogen peroxide (H2O2) is a green oxidizer widely involved in a vast number of chemical reactions. Electrochemical reduction of oxygen to H2O2 constitutes an environmentally friendly synthetic route. However, the oxygen reduction reaction (ORR) is kinetically sluggish and undesired water serves as the main product on most electrocatalysts. Therefore, electrocatalysts with high reactivity and selectivity are highly required for H2O2 electrosynthesis. In this work, a synergistic strategy is proposed for the preparation of H2O2 electrocatalysts with high ORR reactivity and high H2O2 selectivity. A Co?Nx?C site and oxygen functional group comodified carbon‐based electrocatalyst (named as Co–POC–O) is synthesized. The Co–POC–O electrocatalyst exhibits excellent catalytic performance for H2O2 electrosynthesis in O2‐saturated 0.10 m KOH with a high selectivity over 80% as well as very high reactivity with an ORR potential at 1 mA cm?2 of 0.79 V versus the reversible hydrogen electrode (RHE). Further mechanism study identifies that the Co?Nx?C sites and oxygen functional groups contribute to the reactivity and selectivity for H2O2 electrogeneration, respectively. This work affords not only an emerging strategy to design H2O2 electrosynthesis catalysts with remarkable performance, but also the principles of rational combination of multiple active sites for green and sustainable synthesis of chemicals through electrochemical processes.  相似文献   

19.
The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号