首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solid‐state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low‐cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth‐abundant elements, is reported. The thin film is fabricated by a low‐cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K2) at 684 K on rigid Al2O3 substrate and 0.46 mW/(m K2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K2)) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low‐cost and scalable pathway to high‐performance flexible thin film thermoelectric devices from relatively earth‐abundant elements.  相似文献   

2.
Recording thermal conditions, i.e., temperature and time, is of great importance for various applications. Although thermometers can measure temperature and record its temporal change with electronic devices, they are nondisposable and not patch‐type, restricting their uses. Here, photonic films are designed that record thermal condition through irreversible structural deformation and intuitively report it with color patterns. The photonic films are inverse opals made of negative photoresist on a solid support, where the cross‐linking density of the photoresist is regioselectively adjusted. The photonic films show a gradual blueshift of structural color upon heating due to anisotropic compression of the inverse opal, of which the rate depends on temperature and cross‐linking density. For single cross‐linking density, thermal input is quantified from the color change in the form of coupled temperature and time. With multiple cross‐linking densities in a single film, the multicolor pattern is developed, from which the temperature and time are decoupled and separately estimated for isothermal condition.  相似文献   

3.
A stretchable, transparent, and body‐attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high‐performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real‐time monitoring of environment safety and human healthcare.  相似文献   

4.
A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in‐situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as‐prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high‐performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface‐to‐volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low‐cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.  相似文献   

5.
The objectives of this study were to apply fabrication techniques for the zein montmorillonite (MMT) nanocomposite films and characterize the obtained nanocomposite films. Zein MMT nanocomposite films were successfully produced from solvent casting and blown extrusion methods. The two methods could mix the zein MMT resulting in partially exfoliated nanocomposite structures according to X-ray diffraction and transmission electron microscopy. The thermal resistant of the zein nanocomposite films fabricated from both methods improved as the MMT content increased. However, the mechanical and barrier properties showed non-linear relationships with the MMT loadings. The impact of MMT on properties of zein films strongly depended on the preparation techniques. This can be the good starting point to further study in depth insight of the controllable MMT rearrangement in zein films which will remarkably improve zein film properties for packaging applications.  相似文献   

6.
Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high‐performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride‐trifluoroethylene (P(VDF‐TrFE))/barium titanate (BaTiO3) for energy harvesting and highly sensitive self‐powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF‐TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm?2, which an enhancement by a factor of 7.3 relatives to the pristine P(VDF‐TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF‐TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self‐powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.  相似文献   

7.
Thermally conductive and electrically insulating composite materials are required for thermal management in advanced electronic industry. The present work aimed at creating a composite film of cellulose nanofiber (CNF) and nanodiamond (ND) with superior thermal conductivity. The thermal conductivity of the prepared nanocomposite film was ~2.7?Wm?1?K?1, which corresponds to triple of usual CNF/ND composites with similar composition. The distinct thermal conductivity is attributed to a unique nanostructure we made out in the nanocomposite film. The nanostructure can be characterized by CNF fibrils which are densely covered with ND particles.  相似文献   

8.
The development of materials with efficient heat dissipation capability has become essential for next‐generation integrated electronics and flexible smart devices. Here, a 3D hybridized carbon film with graphene nanowrinkles and microhinge structures by a simple solution dip‐coating technique using graphene oxide (GO) on polyimide (PI) skeletons, followed by high‐temperature annealing, is constructed. Such a design provides this graphitized GO/PI (g‐GO/PI) film with superflexibility and ultrahigh thermal conductivity in the through‐plane (150 ± 7 W m‐1 K‐1) and in‐plane (1428 ± 64 W m‐1 K‐1) directions. Its superior thermal management capability compared with aluminum foil is also revealed by proving its benefit as a thermal interface material. More importantly, by coupling the hypermetallic thermal conductivity in two directions, a novel type of carbon film origami heat sink is proposed and demonstrated, outperforming copper foil in terms of heat extraction and heat transfer for high‐power devices. The hypermetallic heat dissipation performance of g‐GO/PI carbon film not only shows its promising application as an emerging thermal management material, but also provides a facile and feasible route for the design of next‐generation heat dissipation components for high‐power flexible smart devices.  相似文献   

9.
Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high‐frequency apparatuses. Besides high thermal conductivity (K ), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m?1 K?1), and highly thermal‐conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris‐free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m?1 K?1. Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large‐area multifunctional GFs can be easily integrated into high‐power flexible devices for highly efficient thermal management.  相似文献   

10.
Various wearable electronic devices have been developed for extensive outdoor activities. The key metrics for these wearable devices are high touch sensitivity and good mechanical and thermal stability of the flexible touchscreen panels (TSPs). Their dielectric constants (k) are important for high touch sensitivities. Thus, studies on flexible and transparent cover layers that have high k with outstanding mechanical and thermal reliabilities are essential. Herein, an unconventional approach for forming flexible and transparent cellulose nanofiber (CNF) films is reported. These films are used to embed ultralong metal nanofibers that serve as nanofillers to increase k significantly (above 9.2 with high transmittance of 90%). Also, by controlling the dimensions and aspect ratios of these fillers, the effects of their nanostructures and contents on the optical and dielectric properties of the films have been studied. The length of the nanofibers can be controlled using a stretching method to break the highly aligned, ultralong nanofibers. These nanofiber‐embedded, high‐k films are mechanically and thermally stable, and they have better Young's modulus and tensile strength with lower thermal expansion than commercial transparent plastics. The demonstration of highly sensitive TSPs using high‐k CNF film for smartphones suggests that this film has significant potential for next‐generation, portable electronic devices.  相似文献   

11.
Layer‐by‐layer (LbL) assembly is a powerful and versatile technique to deposit functional thin films, but often requires a large number of deposition steps to achieve a film thick enough to provide a desired property. By incorporating amine salts into the cationic polyelectrolyte and its associated rinse, LbL clay‐containing nanocomposite films can achieve much greater thickness (>1 μm) with relatively few deposition cycles (≤6 bilayers). Amine salts interact with nanoclays, causing nanoplatelets to deposit in stacks rather than as individual platelets. This technique appears to be universal, exhibiting thick growth with multiple types of nanoclay, including montmorillonite and vermiculite (VMT), and a variety of amine salts (e.g., hexylamine and diethanolamine). The characteristic order found in LbL‐assembled films is maintained despite the incredible thickness. Films assembled in this manner achieve oxygen transmission rates below 0.009 cc m−2 d−1 atm−1 with just 6 bilayers (BLs) of chitosan/VMT deposited. These thick clay‐based thin films also impart exceptional flame resistance. A 2‐BL film renders a 3.2 mm polystyrene plate self‐extinguishing, while an 8‐BL film (3.9 μm thick) prevents ignition entirely. This ability to generate much thicker clay‐based multilayers with amine salts opens up tremendous potential for these nanocoatings in real world applications.  相似文献   

12.
目的为了提高聚丙烯薄膜的阻隔性,利用涂布的方法研究蒙脱土与微纤化纤维素(MFC)含量对涂布膜阻隔性能的影响。方法以蒙脱土和MFC为主要原料,加入胶黏剂、增稠剂、分散剂制备成涂料,并涂布在双向拉伸聚丙烯薄膜上,以薄膜的氧气透过率、水蒸气透过率、红外光谱分析、XRD分析和热稳定性分析作为评判标准,对薄膜性能进行表征与分析。结果在添加的蒙脱土质量分数为2%,MFC质量分数为0.5%时,双组分涂布膜的氧气透过系数达到最低,较聚丙烯薄膜氧气透过系数下降了97%,水蒸气透过系数在添加蒙脱土质量分数为2%,MFC质量分数为0.3%时达到最低,较聚丙烯薄膜水蒸气透过系数下降了22%,XRD显示当MFC质量分数为0.5%时,插层结构最优,通过热稳定性分析得出,双组分涂布膜在蒙脱土质量分数为2%,MFC质量分数为0.5%时热稳定性最好。结论通过综合分析得出,涂布蒙脱土与MFC双组分涂层可有效提高聚丙烯薄膜的阻隔性能。  相似文献   

13.
Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.  相似文献   

14.
Synthetic mimics of natural high‐performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre‐mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre‐mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre‐mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt%). Tailored interactions enable exceptional combinations of ductility (close to 50% strain) and toughness (up to 27.5 MJ m?3). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.  相似文献   

15.
The end market for transparent flexible barrier films is larger than for metallized films. Presently, the market is still dominated by polymeric barrier layers but the used chemicals may be harmful for the environment. An alternative would be transparent thin layers deposited by vacuum deposition techniques using reactive processes. Ceramic materials like silicon oxide or aluminum oxide are used having a film thickness of just ~10 nm, a coating uniformity of +/?5% across and along the film at a barrier performance below 2.0 sccm/m2d for oxygen transmission rate (OTR) and below 1.0 g/m2d for water vapor transmission rate (WVTR) on PET substrates. In this paper, details will be provided about the deposition processes for these barrier layers using thermal evaporation, plasma‐assisted thermal evaporation as well as deposition by electron beam evaporation. An important factor for these high barrier transparent coatings is also to withstand the downstream processes in the whole packaging stream like slitting, lamination, printing etc. One solution is to protect the barrier layers by a Topcoat. For example, off‐line deposition of lacquers is used in field but the market penetration is low due to high process and material costs. An in‐situ Topcoat deposition is a smart solution to overcome this issue saving time and costs. Such an approach will be also described in the presentation and the impact on the performance of the final package will be discussed.  相似文献   

16.
Microelectronics, optoelectronics, and thermal barrier coating technologies are dependent on a thin or thick film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficients of thermal expansion, chemical reactions, and/or other physical effects. Therefore, the weakest link in this composite system often resides at the interface between the film and substrate. In order to assume the long-term reliability of the interface, the fracture behavior of the material interfaces must be known. A new approach of using a spiral notch torsion fracture toughness test system for evaluating interface fracture toughness is described. This innovative technology was demonstrated for oxide scales formed on high-temperature alloys of MA956. The estimated energy release rate (in terms of J-integral) at the interface of the alumina scale and MA956 substrate is 3.7 N-m/m2, and the estimated equivalent Mode I fracture toughness is 1.1 MPa √m.  相似文献   

17.
This work focused on the preparation of poly (vinyl alcohol) (PVA)/inorganic composites. Perlite and organically modified montmorillonite (OMMT) were used as the inorganic compounds. (PVA)/inorganic nanocomposite films were prepared by solvent solution method. The morphology, dynamic mechanical property, and the photochemical stability of these films were studied. The reaction pathway between these OMMT and PVA was suggested that the hydrogen bonding and hydrophobic interactions contributed to the preparation. The obtained new materials have different thermal, mechanical, and photochemical stability from other single components.  相似文献   

18.
Helium gas permeability of silicate clay (montmorillonite) particles/epoxy nanocomposites was examined. The incorporation of increasing amounts of montmorillonite particles reduced the helium gas permeability. Based on Fick’s law, gas permeation behavior of the nanocomposite was evaluated. With the increase of montmorillonite loading, gas diffusivity decreased, while gas solubility increased. Helium diffusion behavior is in agreement to the numerical results based on the Hatta–Taya–Eshelby theory. It has been revealed that dispersion of nanoscale platelets in polymer is effective in improving gas barrier property.  相似文献   

19.
Assembly of organic–inorganic nanocomposite with nacre-like structure has long been considered a valuable bio-inspired route to design materials with excellent mechanical properties. However, effective control of nanostructure and organic content concurrently is a key problem. In this research, a special assembly method—hydrothermal–electrophoretic assembly was introduced into preparing nanocomposite that mimics nacre, both in structure and composition. The two-step assembly process included intercalation of polymer into interlayer space of montmorillonite by hydrothermal process and the subsequent electrophoretic deposition. X-ray diffraction, Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electronic microscopy were employed to characterize the structure and composition of the films. Reduced Young's modulus was determined by nanoindentation. Results showed that by constructing brick-and-mortar nanostructure, reduced Young's modulus of the composite film was effectively enhanced even when organic content was low.  相似文献   

20.
设计制备柔性导热材料对柔性电子器件的热管理具有重要意义。本文基于溶剂剥离的芳纶纳米纤维和氮化铝(AlN)纳米颗粒,采用溶胶-凝胶-薄膜转换方法,连续制备了柔性导热的AlN/芳纶纳米纤维复合薄膜材料。其中,芳纶纳米纤维形成了三维连通的网络结构,提供力学支撑作用;AlN颗粒填充在该网络结构中,赋予复合材料良好的导热性能。结果显示,该复合材料的拉伸强度为65.5 MPa,断裂应变为12%,反复折叠300次后其拉伸强度和断裂应变保持率在90%以上,导热率为13.98 W·(m·K)?1。此外,该复合薄膜显示出良好的绝缘性能和耐热性能,体积电阻率为1.85×1015 Ω·cm、起始热分解温度为524℃。最后,演示该高性能的AlN/芳纶纳米纤维复合薄膜作为柔性基底材料,可用于冷却电子器件。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号