首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   

2.
Precise tailoring of pore chemistry is indispensable for efficient membrane gas separation, particularly for the challenging acetylene system. Here, a strategy called “anion substitution” is reported, to strengthen the interaction between anions and acetylene within the pores, for radically improving gas selectivity and permeability. The anions F and OH are infixed in iPAF-1 to replace the original Cl ion. Their small anionic radii allow retention of the original high porosity of iPAF-1-Cl in iPAF-1-F and iPAF-1-OH. Highly basic F and OH confined in the pores attract acidic acetylene strongly and preferentially. Nanoparticles of iPAF-1 are processed to form mixed matrix membranes, represented by iPAF-1-OH/6FDA-ODA. The prepared membranes exhibit remarkable performance in separating acetylene from ethylene and ethane. Transplantation of porous and functional iPAF-1-OH into 6FDA-ODA significantly enhances both acetylene permeability (sevenfold) and permselectivity (fivefold) for acetylene over ethylene and ethane, which is crucial for membrane acetylene gas separation.  相似文献   

3.
Membrane‐based separations can reduce the energy consumption and the CO2 footprint of large‐scale fluid separations, which are traditionally practiced by energy‐intensive thermally driven processes. Here, a new type of membrane structure based on nanoporous carbon is reported, which, according to this study, is best referred to as carbon/carbon mixed‐matrix (CCMM) membranes. The CCMM membranes are formed by high‐temperature (up to 900 °C) pyrolysis of polyimide precursor hollow‐fiber membranes. Unprecedentedly high permselectivities are seen in CCMM membranes for CO2/CH4, N2/CH4, He/CH4, and H2/CH4 separations. Analysis of permeation data suggests that the ultrahigh selectivities result from substantially increased sorption selectivities, which is hypothetically owing to the formation of ultraselective micropores that selectively exclude the bulkier CH4 molecules. With tunable sorption selectivities, the CCMM membranes outperform flexible polymer membranes and traditional rigid molecular‐sieve membranes. The capability to increase sorption selectivities is a powerful tool to leverage diffusion selectivities, and has opened the door to many challenging and economically important fluid separations that require ultrafine differentiation of closely sized molecules.  相似文献   

4.
A molecular porous material, MPM-2, comprised of cationic [Ni2(AlF6)(pzH)8(H2O)2] and anionic [Ni2Al2F11(pzH)8(H2O)2] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1 year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298 K revealing a strong affinity for C2H2 over CO2 thanks to a high (ΔQst)AC [Qst (C2H2) − Qst (CO2)] of 13.7 kJ mol−1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2H2 from a 1:1 C2H2/CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2H2 molecules and F atoms of AlF63− are found to enable high selectivity toward C2H2, as determined by density functional theory simulations.  相似文献   

5.
One-step purification of ethylene (C2H4) from a quaternary gas mixture of C2H6/C2H4/C2H2/CO2 by adsorption is a promising separation process, yet developing adsorbents that synergistically capture various gas impurities remains challenging. Herein, a Lego-brick strategy is proposed to customize pore chemistry in a unified framework material. The ethane-selective MOF platform is further modified with customized binding sites to specifically adsorb acetylene and carbon dioxide, thus one-step purification of C2H4 with high productivity of polymer-grade product (134 mol kg−1) is achieved on the assembly of porous coordination polymer-2,5-furandicarboxylic acid (PCP-FDCA) and PCP-5-aminoisophthalic acid (IPA-NH2). Computational studies verify that the low-polarity surface of this MOFs-based platform provides a delicate environment for C2H6 recognition, and the specific binding sites (FDCA and IPA-NH2) exhibit favorable trapping of C2H2 and CO2 via C Hδ+···Oδ− and Cδ+···Nδ− electrostatic interactions, respectively. The proposed Lego-brick strategy to customize binding sites within the MOFs structure provides new ideas for the design of adsorbents for compounded separation tasks.  相似文献   

6.
7.
8.
9.
Molecular sieving membranes have great potential for energy-saving separations, but they suffer from permeability-selectivity trade-off limitation. In this report, simultaneous hetero-crystallization and hetero-linker coordination of metal–organic framework (MOF) hollow fiber membranes through one-pot synthesis for precise gas separation is reported. It is found that the hetero-polycrystalline membranes consist of 2D and 3D MOF phases and are defect-free and roughly orientated, hetero-linker exchange of 3D phase by larger geometric ones can narrow transport pathway, and framework rigidification occurs and thus fixes MOF channels. The prepared membranes are robust and reproducible, and exhibit substantially improved performance, with H2/CO2, H2/N2, and H2/CH4 selectivities up to 361, 482, and 541, respectively, accompanied by high H2 permeance over 1100 gas permeation units, which can easily outclass trade-off upper bounds of state-of-the-art membranes.  相似文献   

10.
Polymer membranes with ultrahigh CO2 permeabilities and high selectivities are needed to address some of the critical separation challenges related to energy and the environment, especially in natural gas purification and postcombustion carbon capture. However, very few solution‐processable, linear polymers are known today that access these types of characteristics, and all of the known structures achieve their separation performance through the design of rigid backbone chemistries that concomitantly increase chain stiffness and interchain spacing, thereby resulting in ultramicroporosity in solid‐state chain‐entangled films. Herein, the separation performance of a porous polymer obtained via ring‐opening metathesis polymerization is reported, which possesses a flexible backbone with rigid, fluorinated side chains. This polymer exhibits ultrahigh CO2 permeability (>21 000 Barrer) and exceptional plasticization resistance (CO2 plasticization pressure > 51 bar). Compared to traditional polymers of intrinsic microporosity, the rate of physical aging is slower, especially for gases with small effective diameters (i.e., He, H2, and O2). This structural design strategy, coupled with studies on fluorination, demonstrates a generalizable approach to create new polymers with flexible backbones and pore‐forming side chains that have unexplored promise for small‐molecule separations.  相似文献   

11.
Superhydrophobic coating has a great application prospect in self-cleaning and oil-water separation but remains challenging for large-scale preparation of robust and weather-resistant superhydrophobic coatings via facile approaches. Herein, this work reports a scalable fabrication of weather-resistant superhydrophobic coating with multiscale rough coral reef-like structures by spraying the suspension containing superhydrophobic silica nanoparticles and industrial coating varnish on various substrates. The coral reef-like structures effectively improves the surface roughness and abrasion resistance. Rapid aging experiments (3000 h) and the outdoor building project application (3000 m2) show that the sprayed superhydrophobic coating exhibits excellent self-cleaning properties, weather resistance, and environmental adaptability. Moreover, the combined silica-coating varnish-polyurethane (CSCP) superhydrophobic sponge exhibits exceptional oil-water separation capabilities, selectively absorbing the oils from water up to 39 times of its own weight. Furthermore, the molecular dynamics (MD) simulation reveals that the combined effect of higher surface roughness, smaller diffusion coefficient of water molecules, and weaker electrostatic interactions between water and the surface jointly determines the superhydrophobicity of the prepared coating. This work deepens the understanding of the anti-wetting mechanism of superhydrophobic surfaces from the perspective of energetic and kinetic properties, thereby paving the way for the rational design of superhydrophobic materials and their large-scale applications.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号