首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.  相似文献   

2.
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy‐loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p‐doped hole transport layers (HTLs), since the F4‐TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open‐circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.  相似文献   

3.
In this work, solar cells based on methylammonium lead iodide (MAPbI3) doped in solution with C70 fullerene in a mesoporous as well as planar electron‐transporting layer (ETL)‐free architecture are realized, showcasing in the latter case a record efficiency of 15.7% and an improved open‐circuit voltage (VOC). Contrary to the bulk heterojunction previously reported, the C70 molecules do not phase segregate and they are rather finely dispersed in the perovskite film, possibly infiltrating at the grain boundaries, while assisting the growth of a highly uniform perovskite layer. By means of time‐resolved femtosecond‐to‐nanosecond optical spectroscopy, with an extended spectral coverage, it is observed that electrons photogenerated in the perovskite are transferred to C70 with a time constant of 20 ps. Despite being captured by C70, electrons are not deeply trapped and can potentially bounce back into the perovskite, as suggested by the high fill factor and enhanced VOC of the MAPbI3:C70 solar cells, especially in the case of the ETL‐free device configuration.  相似文献   

4.
Efficient wide‐bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky–Queisser limit, but they suffer from a larger open circuit voltage (VOC) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene‐C60 bisadduct (ICBA) with higher‐lying lowest‐unoccupied‐molecular‐orbital is needed for WBG perovskite solar cells, while its energy‐disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA‐tran3 from the as‐synthesized ICBA‐mixture. WBG perovskite solar cells with ICBA‐tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels.  相似文献   

5.
In hybrid organic–inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3) layer and/or inserted between the perovskite and the hole‐transporting layers to enhance the build‐in field (BIF), improve the crystallization of MAPbI3, and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer‐doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open‐circuit voltage of 1.14 V.  相似文献   

6.
2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 perovskite cells with different numbers of [PbI6]4? sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (VOC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device VOC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.  相似文献   

7.
The power conversion efficiency of colloidal PbS‐quantum‐dot (QD)‐based solar cells is significantly hampered by lower‐than‐expected open circuit voltage (VOC). The VOC deficit is considerably higher in QD‐based solar cells compared to other types of existing solar cells due to in‐gap trap‐induced bulk recombination of photogenerated carriers. Here, this study reports a ligand exchange procedure based on a mixture of zinc iodide and 3‐mercaptopropyonic acid to reduce the VOC deficit without compromising the high current density. This layer‐by‐layer solid state ligand exchange treatment enhances the photovoltaic performance from 6.62 to 9.92% with a significant improvement in VOC from 0.58 to 0.66 V. This study further employs optoelectronic characterization, X‐ray photoelectron spectroscopy, and photoluminescence spectroscopy to understand the origin of VOC improvement. The mixed‐ligand treatment reduces the sub‐bandgap traps and significantly reduces bulk recombination in the devices.  相似文献   

8.
Wide-bandgap perovskite solar cells (PSCs) have attracted a lot of attention due to their application in tandem solar cells. However, the open-circuit voltage (VOC) of wide-bandgap PSCs is dramatically limited by high defect density existing at the interface and bulk of the perovskite film. Here, an anti-solvent optimized adduct to control perovskite crystallization strategy that reduces nonradiative recombination and minimizes VOC deficit is proposed. Specifically, an organic solvent with similar dipole moment, isopropanol (IPA) is added into ethyl acetate (EA) anti-solvent, which is beneficial to form PbI2 adducts with better crystalline orientation and direct formation of α-phase perovskite. As a result, EA-IPA (7-1) based 1.67 eV PSCs deliver a power conversion efficiency of 20.06% and a VOC of 1.255 V, which is one of the remarkable values for wide-bandgap around 1.67 eV. The findings provide an effective strategy for controlling crystallization to reduce defect density in PSCs.  相似文献   

9.
Current‐density–voltage (JV) hysteresis in perovskite solar cells (PSCs) is a critical issue because it is related to power conversion efficiency and stability. Although parameters affecting the hysteresis have been already reported and reviewed, little investigation is reported on scan‐direction‐dependent JV curves depending on perovskite composition. This review investigates JV hysteric behaviors depending on perovskite composition in normal mesoscopic and planar structure. In addition, methodologies toward hysteresis‐free PSCs are proposed. There is a specific trend in hysteresis in terms of JV curve shape depending on composition. Ion migration combined with nonradiative recombination near interfaces plays a critical role in generating hysteresis. Interfacial engineering is found to be an effective method to reduce the hysteresis; however, bulk defect engineering is the most promising method to remove the hysteresis. Among the studied methods, KI doping is proved to be a universal approach toward hysteresis‐free PSCs regardless of perovskite composition. It is proposed from the current studies that engineering of perovskite film near the electron transporting layer (ETL) and the hole transporting layer (HTL) is of vital importance for achieving hysteresis‐free PSCs and extremely high efficiency.  相似文献   

10.
In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future.  相似文献   

11.
Plastic solar cells bear the potential for large‐scale power generation based on materials that provide the possibility of flexible, lightweight, inexpensive, efficient solar cells. Since the discovery of the photoinduced electron transfer from a conjugated polymer to fullerene molecules, followed by the introduction of the bulk heterojunction (BHJ) concept, this material combination has been extensively studied in organic solar cells, leading to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. This article reviews the processes and limitations that govern device operation of polymer:fullerene BHJ solar cells, with respect to the charge‐carrier transport and photogeneration mechanism. The transport of electrons/holes in the blend is a crucial parameter and must be controlled (e.g., by controlling the nanoscale morphology) and enhanced in order to allow fabrication of thicker films to maximize the absorption, without significant recombination losses. Concomitantly, a balanced transport of electrons and holes in the blend is needed to suppress the build‐up of the space–charge that will significantly reduce the power conversion efficiency. Dissociation of electron–hole pairs at the donor/acceptor interface is an important process that limits the charge generation efficiency under normal operation condition. Based on these findings, there is a compromise between charge generation (light absorption) and open‐circuit voltage (VOC) when attempting to reduce the bandgap of the polymer (or fullerene). Therefore, an increase in VOC of polymer:fullerene cells, for example by raising the lowest unoccupied molecular orbital level of the fullerene, will benefit cell performance as both fill factor and short‐circuit current increase simultaneously.  相似文献   

12.
Employing a layer of bulk‐heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite‐based solar cells, instead of using tandem devices or near infrared (NIR)‐absorbing Sn‐containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short‐circuit current (JSC) and fill factor (FF). To find an appropriate NIR‐absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase JSC, but also possess suitable energy levels and high mobility to afford high VOC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well‐matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high Voc, JSC, and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices.  相似文献   

13.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.  相似文献   

14.
To take advantages of the intense absorption and fluorescence, high charge mobility, and high dielectric constant of CsPbI3 perovskite quantum dots (PQDs), PQD hybrid nonfullerene organic solar cells (OSCs) are fabricated. Addition of PQDs leads to simultaneous enhancement of open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF); power conversion efficiencies are boosted from 11.6% to 13.2% for PTB7-Th:FOIC blend and from 15.4% to 16.6% for PM6:Y6 blend. Incorporation of PQDs dramatically increases the energy of the charge transfer state, resulting in near-zero driving force and improved VOC. Interestingly, at near-zero driving force, the PQD hybrid OSCs show more efficient charge generation than the control device without PQDs, contributing to enhanced JSC, due to the formation of cascade band structure and increased molecular ordering. The strong fluorescence of the PQDs enhances the external quantum efficiency of the electroluminescence of the active layer, which can reduce nonradiative recombination voltage loss. The high dielectric constant of the PQDs screens the Coulombic interactions and reduces charge recombination, which is beneficial for increased FF. This work may open up wide applicability of perovskite quantum dots and an avenue toward high-performance nonfullerene solar cells.  相似文献   

15.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

16.
Cesium‐based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and polythiophene hole‐acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2Br, can significantly reduce electron‐hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole‐injection into the hole‐acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed‐halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open‐circuit voltage (VOC) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium‐lead mixed‐halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss.  相似文献   

17.
Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron‐transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony‐doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two‐step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer‐scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high‐quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high‐efficiency PSCs from the aspect of carrier transport and recombination.  相似文献   

18.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

19.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

20.
Alternative low‐temperature solution‐processed hole‐transporting materials (HTMs) without dopant are critical for highly efficient perovskite solar cells (PSCs). Here, two novel small molecule HTMs with linear π‐conjugated structure, 4,4′‐bis(4‐(di‐p‐toyl)aminostyryl)biphenyl (TPASBP) and 1,4′‐bis(4‐(di‐p‐toyl)aminostyryl)benzene (TPASB), are applied as hole‐transporting layer (HTL) by low‐temperature (sub‐100 °C) solution‐processed method in p‐i‐n PSCs. Compared with standard poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) HTL, both TPASBP and TPASB HTLs can promote the growth of perovskite (CH3NH3PbI3) film consisting of large grains and less grain boundaries. Furthermore, the hole extraction at HTL/CH3NH3PbI3 interface and the hole transport in HTL are also more efficient under the conditions of using TPASBP or TPASB as HTL. Hence, the photovoltaic performance of the PSCs is dramatically enhanced, leading to the high efficiencies of 17.4% and 17.6% for the PSCs using TPASBP and TPASB as HTL, respectively, which are ≈40% higher than that of the standard PSC using PEDOT:PSS HTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号