首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐photon photodynamic therapy (TP‐PDT) is emerging as a powerful strategy for stereotactic targeting of diseased areas, but ideal photosensitizers (PSs) are currently lacking. This work reports a smart PS with aggregation‐induced emission (AIE) feature, namely DPASP, for TP‐PDT with excellent performances. DPASP exhibits high affinity to mitochondria, superior photostability, large two‐photon absorption cross section as well as efficient reactive oxygen species generation, enabling it to achieve photosensitization both in vitro and in vivo under two‐photon excitation. Moreover, its capability of stereotactic ablation of targeted cells with high‐precision is also successfully demonstrated. All these merits make DPASP a promising TP‐PDT candidate for accurate ablation of abnormal tissues with minimal damages to surrounding areas in the treatment of various diseases.  相似文献   

2.
Folate functionalized nanoparticles (NPs) that contain fluorogens with aggregation‐induced emission (AIE) characteristics are fabricated to show bright far‐red/near‐infrared fluorescence, a large two‐photon absorption cross section and low cytotoxicity, which are internalized into MCF‐7 cancer cells mainly through caveolae‐mediated endocytosis. One‐photon excited in vivo fluorescence imaging illustrates that these AIE NPs can accumulate in a tumor and two‐photon excited ex vivo tumor tissue imaging reveals that they can be easily detected in the tumor mass at a depth of 400 μm. These studies indicate that AIE NPs are promising alternatives to conventional TPA probes for biological imaging.  相似文献   

3.
Fluorescence‐imaging‐guided photodynamic therapy has emerged as a promising protocol for cancer theranostics. However, facile preparation of such a theranostic material for simultaneously achieving bright emission with long wavelength, high‐performance reactive oxygen species (ROS) generation, and good targeting‐specificity of cancer cells, is highly desirable but remains challenging. In this study, a novel type of far‐red/near‐infrared‐emissive fluorescent molecules with aggregation‐induced emission (AIE) characteristics is synthesized through a few steps reaction. These AIE luminogens (AIEgens) possess simple structures, excellent photostabilities, large Stokes shifts, bright emission, and good biocompatibilities. Meanwhile, their ROS generation is extremely efficient with up to 90.7% of ROS quantum yield, which is far superior to that of some popularly used photosensitizers. Importantly, these AIEgens are able to selectively target and ablate cancer cells over normal cells without the aid of any extra targeting ligands. Rather than using laser light, one of the presented AIEgens (MeTTPy) shows a remarkable tumor‐targeting photodynamic therapeutic effect by using an ultralow‐power lamp light (18 mW cm?2). This study thus not only extends the applications scope of AIEgens, but also offers useful insights into designing a new generation of cancer theranostics.  相似文献   

4.
Fluorescent nanoparticles (NPs) based on luminogens with aggregation‐induced emission characteristic (AIEgens), namely AIE dots, have received wide attention because of their antiquenching attitude in emission and reactive oxygen species (ROS) generation when aggregated. However, few reports are available on how to control and optimize their fluorescence and ROS generation ability. Herein, it is reported that enhancing the intraparticle confined microenvironment is an effective approach to advanced AIE dots, permitting boosted cancer phototheranostics in vivo. Formulation of a “rotor‐rich” and inherently charged near‐infrared (NIR) AIEgen with 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethylene glycol)‐2000] and corannulene‐decorated PEG affords DSPE‐AIE dots and Cor‐AIE dots, respectively. Compared to DSPE‐AIE dots, Cor‐AIE dots show 4.0‐fold amplified fluorescence quantum yield and 5.4‐fold enhanced ROS production, because corannulene provides intraparticle rigidity and strong interactions with the AIEgen to restrict the intramolecular rotation of AIEgen to strongly suppress the nonradiative decay and significantly facilitate the fluorescence pathway and intersystem crossing. Thus, it tremendously promotes phototheranostic efficacies in terms of NIR image‐guided cancer surgery and photodynamic therapy using a peritoneal carcinomatosis‐bearing mouse model. Collectively, it not only provides a novel strategy to advanced AIE dots for cancer phototheranostics, but also brings new insights into the design of superior fluorescent NPs for biomedical applications.  相似文献   

5.
Photodynamic therapy (PDT) based on photosensitizers (PSs) constructed with nanomaterials has become popular in cancer treatment, especially oral carcinoma cell. This therapy is characterized by improved PS accumulation in tumor regions and generation of reactive oxygen species (ROS) for PDT under specific excitation. In the selection of near‐infrared (NIR) window, 808 nm NIR light because it can avoid the absorption of water is particularly suitable for the application in PDT. Hence, multiband emissions under a single 808 nm near‐infrared excitation of Nd3+‐sensitized upconversion nanoparticles (808 nm UCNPs) have been applied for the PDT effect. 808 nm UCNPs serve as light converter to emit UV light to excite inorganic PS, graphitic carbon nitride quantum dots (CNQDs), thereby generating ROS. In this study, a nanocomposite consisting UCNPs conjugated with poly‐l ‐lysine (PLL) to improve binding with CNQDs is fabricated. According to the research results, NIR‐triggered nanocomposites of 808 nm UCNP‐PLL@CNs have been verified by significant improvement in ROS generation. Consequently, 808 nm UCNP‐PLL@CNs exhibit high capability for ROS production and efficient PDT in vitro and in vivo. Moreover, the mechanism of PDT treatment by 808 nm UCNP‐PLL@CNs is evaluated using the cell apoptosis pathway.  相似文献   

6.
Robust luminescent dyes with efficient two‐photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation‐caused quenching. In this work, a red fluorescent silole, 2,5‐bis[5‐(dimesitylboranyl)thiophen‐2‐yl]‐1‐methyl‐1,3,4‐triphenylsilole ((MesB)2DTTPS), is synthesized and characterized. (MesB)2DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation‐enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2DTTPS within lipid‐PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two‐photon absorption cross section of 3.43 × 105 GM, which yields a two‐photon action cross section of 1.09 × 105 GM. These (MesB)2DTTPS dots show good biocompatibility and are successfully applied to one‐photon and two‐photon fluorescence imaging of MCF‐7 cells and two‐photon in vivo visualization of the blood vascular of mouse muscle in a high‐contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network.  相似文献   

7.
Photodynamic therapy (PDT) is an important cancer treatment modality due to its minimally invasive nature. However, the efficiency of existing PDT drug molecules in the deep‐tissue‐penetrable near‐infrared (NIR) region has been the major hurdle that has hindered further development and clinical usage of PDT. Thus, herein a strategy is presented to utilize a resonance energy transfer (RET) mechanism to construct a novel dyad photosensitizer which is able to dramatically boost NIR photon utility and enhance singlet oxygen generation. In this work, the energy donor moiety (distyryl‐BODIPY) is connected to a photosensitizer (i.e., diiodo‐distyryl‐BODIPY) to form a dyad molecule ( RET‐BDP ). The resulting RET‐BDP shows significantly enhanced absorption and singlet oxygen efficiency relative to that of the acceptor moiety of the photosensitizer alone in the NIR range. After being encapsulated with biodegradable copolymer pluronic F‐127‐folic acid (F‐127‐FA), RET‐BDP molecules can form uniform and small organic nanoparticles that are water soluble and tumor targetable. Used in conjunction with an exceptionally low‐power NIR LED light irradiation (10 mW cm?2), these nanoparticles show superior tumor‐targeted therapeutic PDT effects against cancer cells both in vitro and in vivo relative to unmodified photosensitizers. This study offers a new method to expand the options for designing NIR‐absorbing photosensitizers for future clinical cancer treatments.  相似文献   

8.
Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of treatment for tumors. Herein, a new aggregation‐induced emission (AIE)gen (MeO‐TPE‐indo, MTi) is synthesized with a D–π–A conjugated structure. MTi, which has an electron donor and an acceptor on a tetraphenylethene (TPE) conjugated skeleton, can induce the effective generation of reactive oxygen species (ROS) for PDT. With the guide of the indolium group, MTi can target and image mitochondrion selectively. In order to get good dispersion in water and long‐time retention in tumors, MTi is modified on the surface of polydopamine nanoparticles (PDA NPs) to form the nanocomposite (PDA‐MeO‐TPE‐indo, PMTi ) by π–π and hydrogen interactions. PMTi is a nanoscale composite for imaging‐guided PDT and PTT in tumor treatment, which is constructed with AIEgens and PDA for the first time. The organic functional molecules are combined with nanomaterials for building a multifunctional diagnosis and treatment platform by utilizing the advantages of both sides.  相似文献   

9.
As traditional phototherapy agents, boron dipyrromethene (BODIPY) photosensitizers have attracted increasing attention due to their high molar extinction coefficients, high phototherapy efficacy, and excellent photostability. After being formed into nanostructures, BODIPY‐containing nano‐photosensitizers show enhanced water solubility and biocompatibility as well as efficient tumor accumulation compared to BODIPY molecules. Hence, BODIPY nano‐photosensitizers demonstrate a promising potential for fighting cancer. This review contains three sections, classifying photodynamic therapy (PDT), photothermal therapy (PTT), and the combination of PDT and PTT based on BODIPY nano‐photosensitizers. It summarizes various BODIPY nano‐photosensitizers, which are prepared via different approaches including molecular precipitation, supramolecular interactions, and polymer encapsulation. In each section, the design strategies and working principles of these BODIPY nano‐photosensitizers are highlighted. In addition, the detailed in vitro and in vivo applications of these recently developed nano‐photosensitizers are discussed together with future challenges in this field, highlighting the potential of these promising nanoagents for new tumor phototherapies.  相似文献   

10.
Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g?1 cm?1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics.  相似文献   

11.
Upconverting nanoparticles (UCNPs) have attracted considerable attention as potential photosensitizer carriers for photodynamic therapy (PDT) in deep tissues. In this work, a new and efficient NIR photosensitizing nanoplatform for PDT based on red‐emitting UCNPs is designed. The red emission band matches well with the efficient absorption bands of the widely used commercially available photosensitizers (Ps), benefiting the fluorescence resonance energy transfer (FRET) from UCNPs to the attached photosensitizers and thus efficiently activating them to generate cytotoxic singlet oxygen. Three commonly used photosensitizers, including chlorine e6 (Ce6), zinc phthalocyanine (ZnPc) and methylene blue (MB), are loaded onto the alpha‐cyclodextrin‐modified UCNPs to form Ps@UCNPs complexes that efficiently produce singlet oxygen to kill cancer cells under 980 nm near‐infrared excitation. Moreover, two different kinds of drugs are co‐loaded onto these nanoparticles: chemotherapy drug doxorubicin and PDT agent Ce6. The combinational therapy based on doxorubicin (DOX)‐induced chemotherapy and Ce6‐triggered PDT exhibits higher therapeutic efficacy relative to the individual means for cancer therapy in vitro.  相似文献   

12.
In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self‐sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)‐poly(ε‐caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys‐Arg‐Gly‐Asp‐Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.  相似文献   

13.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

14.
Photodynamic therapy (PDT) agent, which generates singlet oxygen (1O2) under light, has attracted significant attention for its broad biological and medical applications. Here, DNA‐driven shell–satellite (SS) gold assemblies as chiral photosensitizers are first fabricated. The chiral plasmonic nanostructure, coupling with cysteine enantiomers on its surface, exhibits intense chiroplasmonic activities (?40.2 ± 2.6 mdeg) in the visible region. These chiral SS nanoassemblies have high reactive oxygen species generating efficiency under circular polarized light illumination, resulting in a 1O2 quantum yield of 1.09. Meanwhile, it is found that SS could be utilized as PDT agent with remarkable efficiency under right circular polarized light irradiation in vitro and in vivo, allowing X‐ray computed tomography (CT) and photoacoustics (PA) imaging for tumors simultaneously. The achievements reveal that the enantiomer‐dependent and structure‐induced nanoassemblies play an important role in PDT effects. The present researches open up a new avenue for cancer diagnose and therapy using chiral nanostructures as multifunctional platform.  相似文献   

15.
Nanoparticles emitting two‐photon luminescence are broadly used as photostable emitters for nonlinear microscopy. Second‐harmonic generation (SHG) as another two‐photon mechanism offers complementary optical properties but the reported sizes of nanoparticles are still large, of a few tens of nanometers. Herein, coherent SHG from single core/shell CdTe/CdS nanocrystals with a diameter of 10 to 15 nm is reported. The nanocrystal excitation spectrum reveals resonances in the nonlinear efficiency with an overall maximum at about 970 nm. Polarization analysis of the second‐harmonic emission confirms the expected zinc blende symmetry, and allows extraction of the three‐dimensional nanocrystal orientation. The small size of these nonlinearly active quantum dots, together with the intrinsic coherence and orientation sensitivity of the SHG process, are well adapted for ultrafast probing of optical near‐fields with high resolution as well as for orientation tracking for bioimaging applications.  相似文献   

16.
Multimodal imaging guided synergistic therapy promises more accurate diagnosis than any single imaging modality, and higher therapeutic efficiency than any single one or their simple “mechanical” combination. Herein, we report a dual‐stimuli responsive nanotheranostic based on a hierarchical nanoplatform, composed of mesoporous silica‐coated gold nanorods (GNR@SiO2), Indocyanine Green (ICG), and 5‐fluorouracil (5‐FU), for in vivo multimodal imaging guided synergistic therapy. The 5‐FU loaded ICG‐conjugated silica‐coated gold nanorods (GNR@SiO2‐5‐FU‐ICG) was able to response specifically to the two stimuli of pH change and near‐infrared (NIR) light irradiation. Both the NIR light irradiation and acidic environment accelerated the 5‐FU release. Meanwhile, the heat generation and singlet oxygen production can be induced by GNR@SiO2‐5‐FU‐ICG upon light irradiation. Most intriguingly, the nanoplatform also promises multimodal imaging such as two‐photon luminescence, fluorescence, photoacoustic, photothermal imaging, as well as trimodal synergistic therapy such as photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy. The cancer theranostic capability of GNR@SiO2‐5‐FU‐ICG was evaluated both in vitro and in vivo. The trimodal synergistic therapy with the guidance of multimodal imaging exhibited remarkably enhanced treatment efficacy. This concept of a hierarchical nanoplatform integrates multiple diagnostic/therapeutic modalities into one platform, which can potentially be applied as personalized nanomedicine with drug delivery, diagnosis, and treatment.  相似文献   

17.
Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR‐excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR‐808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)‐functionalized silica layer is developed for PDT agent. The two booster effectors (dye‐sensitization and core–shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.  相似文献   

18.
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image‐guided PDT. However, simultaneously achieving effective 1O2 generation, long wavelength absorption, and stable near‐infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation‐induced NIR emission and very effective 1O2 generation in aggregate state. The yielded nanoparticles show very effective 1O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image‐guided photodynamic anticancer therapy.  相似文献   

19.
Photodynamic therapy (PDT), as an emerging clinically approved modality, has been used for treatment of various cancer diseases. Conventional PDT strategies are mainly focused on superficial lesions because the wavelength of illumination light of most clinically approved photosensitizers (PSs) is located in the UV/VIS range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep‐seated tumors. The combination of PDT and nanotechnology is becoming a promising approach to fight against deep tumors. Here, the rapid development of new PDT modalities based on various smartly designed nanocomposites integrating with conventionally used PSs for deep tumor treatments is introduced. Until now many types of multifunctional nanoparticles have been studied, and according to the source of excitation energy they can be classified into three major groups: near infrared (NIR) light excited nanomaterials, X‐ray excited scintillating/afterglow nanoparticles, and internal light emission excited nanocarriers. The in vitro and in vivo applications of these newly developed PDT modalities are further summarized here, which highlights their potential use as promising nano‐agents for deep tumor therapy.  相似文献   

20.
Aggregation induced emission (AIE) has attracted considerable interest for the development of fluorescence probes. However, controlling the bioconjugation and cellular labeling of AIE dots is a challenging problem. Here, this study reports a general approach for preparing small and bioconjugated AIE dots for specific labeling of cellular targets. The strategy is based on the synthesis of oxetane‐substituted AIEgens to generate compact and ultrastable AIE dots via photo‐crosslinking. A small amount of polymer enriched with oxetane groups is cocondensed with most of the AIEgens to functionalize the nanodot surface for subsequent streptavidin bioconjugation. Due to their small sizes, good stability, and surface functionalization, the cell‐surface markers and subcellular structures are specifically labeled by the AIE dot bioconjugates. Remarkably, stimulated emission depletion imaging with AIE dots is achieved for the first time, and the spatial resolution is significantly enhanced to ≈95 nm. This study provides a general approach for small functional molecules for preparing small sized and ultrastable nanodots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号