首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Organic‐graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene–molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin‐film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well‐known bulk‐phase, which adapts a face‐on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c‐axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene–pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene–molecule interactions.  相似文献   

2.
Field‐effect transistors based on conjugated polymers are being developed for large‐area electronic applications on flexible substrates, but they also provide a very useful tool to probe the charge transport physics of these complex materials. In this review we discuss recent progress in polymer semiconductor materials, which have brought the performance and mobility of polymer devices to levels comparable to that of small‐molecule organic semiconductors. These new materials have also enabled deeper insight into the charge transport physics of high‐mobility polymer semiconductors gained from experiments with high charge carrier concentration and better molecular‐scale understanding of the electronic structure at the semiconductor/dielectric interface.  相似文献   

3.
Energy barriers between the metal Fermi energy and the molecular levels of organic semiconductor devoted to charge transport play a fundamental role in the performance of organic electronic devices. Typically, techniques such as electron photoemission spectroscopy, Kelvin probe measurements, and in‐device hot‐electron spectroscopy have been applied to study these interfacial energy barriers. However, so far there has not been any direct method available for the determination of energy barriers at metal interfaces with n‐type polymeric semiconductors. This study measures and compares metal/solution‐processed electron‐transporting polymer interface energy barriers by in‐device hot‐electron spectroscopy and ultraviolet photoemission spectroscopy. It not only demonstrates in‐device hot‐electron spectroscopy as a direct and reliable technique for these studies but also brings it closer to technological applications by working ex situ under ambient conditions. Moreover, this study determines that the contamination layer coming from air exposure does not play any significant role on the energy barrier alignment for charge transport. The theoretical model developed for this work confirms all the experimental observations.  相似文献   

4.
Highly conductive molecular wires are an important component for realizing molecular electronic devices and have to be explored in terms of interactions between molecules and electrodes in their molecular junctions. Here, new molecular wire junctions are reported to enhance charge transport through gold nanoparticle (AuNP)‐linked double self‐assembled monolayers (SAMs) of cobalt (II) bis‐terpyridine molecules (e.g., Co(II)(tpyphS)2). Electrical characteristics of the double‐SAM devices are explored in terms of the existence of AuNP. The AuNP linker in the Co(II)(tpyphS)2–AuNP–Co(II)(tpyphS)2 junction acts as an electronic contact that is transparent to electrons. The weak temperature dependency of the AuNP‐linked molecular junctions strongly indicates sequential tunneling conduction through the highest occupied molecular orbitals (HOMOs) of Co(II)(tpyphS)2 molecules. The electrochemical characteristics of the AuNP–Co(II)(tpyphS)2 SAMs reveal fast electron transfer through molecules linked by AuNP. Density functional theory calculations reveal that the molecular HOMO levels are dominantly affected by the formation of junctions. The intermolecular charge transport, controlled by the AuNP linker, can provide a rational design for molecular connection that achieves a reliable electrical connectivity of molecular electronic components for construction of molecular electronic circuits.  相似文献   

5.
Ordered molecular materials are increasingly used in active electronic and photonic organic devices. In this progress report we discuss whether the self‐assembling properties and supramolecular structures of liquid crystals can be tailored to improve such devices. Recent developments in charge‐transporting and luminescent liquid crystals are discussed in the context of material requirements for organic light‐emitting devices, photovoltaics, and thin film transistors. We identify high carrier mobility, polarized emission, and enhanced output‐coupling as the key advantages of nematic and smectic liquid crystals for electroluminescence. The formation of anisotropic polymer networks gives the added benefits of multilayer capability and photopatternability. The anisotropic transport and high carrier mobilities of columnar liquid crystals make them promising candidates for photovoltaics and transistors. We also outline some of the issues in material design and processing that these applications demand. The photonic properties of chiral liquid crystals and their use as mirror‐less lasers are also discussed.  相似文献   

6.
Graphene and carbon nanotubes (CNTs) represent attractive materials for photovoltaic (PV) devices due to their unique electronic and optical properties. Graphene and single-wall carbon nanotubes (SWNTs) layers can be directly configured as energy conversion materials to fabricate thin-film solar cells, serving as both photogeneration sites and charge carrier collecting/transport layers. SWNTs can be modified into either p-type conductor through chemical doping (like acidic purification) or n-type conductor through polymer functionalisation. The solar cells can be simply made of a semitransparent thin film of graphene (or SWNTs) deposited on a proper type of silicon substrate to create high-density Schottky (or p–n) junctions at the interface. The high aspect ratios and large surface area of these carbon nano-structured materials can benefit exciton dissociation and charge carrier transport thus improving the power conversion efficiency.  相似文献   

7.
Polymer‐ and small‐molecule‐based organic electronic devices are being developed for applications including electroluminescent displays, transistors, and solar cells due to the promise of low‐cost manufacturing. It has become clear that these materials exhibit nanoscale heterogeneities in their optical and electrical properties that affect device performance, and that this nanoscale structure varies as a function of film processing and device‐fabrication conditions. Thus, there is a need for high‐resolution measurements that directly correlate both electronic and optical properties with local film structure in organic semiconductor films. In this article, we highlight the use of electrical scanning probe microscopy techniques, such as conductive atomic force microscopy (c‐AFM), electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM), and similar variants to elucidate charge injection/extraction, transport, trapping, and generation/recombination in organic devices. We discuss the use of these tools to probe device structures ranging from light‐emitting diodes (LEDs) and thin‐film transistors (TFT), to light‐emitting electrochemical cells (LECs) and organic photovoltaics.  相似文献   

8.
Development of high‐performance organic electronic and optoelectronic devices relies on high‐quality semiconducting crystals that have outstanding charge transport properties and long exciton diffusion length and lifetime. To achieve integrated device applications, it is a prerequisite to precisely locate the organic semiconductor crystals (OSCCs) to form a specifically patterned structure. Well‐patterned OSCCs can not only reduce leakage current and cross‐talk between neighboring devices, but also facilely integrate with other device elements and their corresponding interconnects. In this Review, general strategies for the patterning of OSCCs are summarized, and the advantages and limitations of different patterning methods are discussed. Discussion is focused on an advanced strategy for the high‐resolution and wafer‐scale patterning of OSCC by a surface microstructure‐assisted patterning method. Furthermore, the recent progress on OSCC pattern‐based integrated circuities is highlighted. Finally, the research challenges and directions of this young field are also presented.  相似文献   

9.
Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge‐transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra‐broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long‐range order in rubrene single crystals is utilized to engineer organic‐semiconductor–graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 107 A W?1 and a detectivity of 9 × 1011 Jones at room temperature. These findings point toward implementing low‐cost, flexible materials for amplified imaging at ultralow light levels.  相似文献   

10.
The field of organic electronics thrives on the hope of enabling low‐cost, solution‐processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution‐processed p‐type doped polymeric semiconductors. Highlighted topics include how solution‐processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication—applications beyond those directly analogous to inorganic doping.  相似文献   

11.
Vertical organic thin‐film transistors (VOTFTs) are promising devices to overcome the transconductance and cut‐off frequency restrictions of horizontal organic thin‐film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self‐assembly processes which impedes a future large‐area production. In this contribution, high‐performance vertical organic transistors comprising pentacene for p‐type operation and C60 for n‐type operation are presented. The static current–voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self‐assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high‐performance applications of organic transistors.  相似文献   

12.
A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ~10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.  相似文献   

13.
Field‐effect transistors based on solution‐processible organic semiconductors have experienced impressive improvements in both performance and reliability in recent years, and printing‐based manufacturing processes for integrated transistor circuits are being developed to realize low‐cost, large‐area electronic products on flexible substrates. This article reviews the materials, charge‐transport, and device physics of solution‐processed organic field‐effect transistors, focusing in particular on the physics of the active semiconductor/dielectric interface. Issues such as the relationship between microstructure and charge transport, the critical role of the gate dielectric, the influence of polaronic relaxation and disorder effects on charge transport, charge‐injection mechanisms, and the current understanding of mechanisms for charge trapping are reviewed. Many interesting questions on how the molecular and electronic structures and the presence of defects at organic/organic heterointerfaces influence the device performance and stability remain to be explored.  相似文献   

14.
The barrier to charge carrier injection across the semiconductor/electrode interface is a key parameter in the performance of organic transistors and optoelectronic devices, and the work function of the electrode material plays an important role in determining the size of this barrier. We present a new, chemical route for making metal surfaces with low work functions, by functionalizing gold surfaces with self‐assembled monolayers of n,n‐dialkyl dithiocarbamates. Ultraviolet photoemission spectroscopy measurements show that work functions of 3.2 eV ± 0.1 eV can be achieved using this surface modification. Electronic structure calculations reveal that this low work function is a result of the packing‐density, polarization along the N‐C bond, and charge rearrangement associated with chemisorption. We demonstrate that electrodes functionalized with these monolayers significantly improve the performance of organic thin‐film transistors and can potentially be employed in charge selective contacts for organic photovoltaics.  相似文献   

15.
Poor operation stability is a major hurdle for the wide application of organic photovoltaic (OPV) devices. While most attention is given to environmental threats to device stability, we herein show evidence from X‐ray photoemission spectroscopy (XPS) of an intrinsic time‐dependent chemical reaction at a donor/acceptor interface. Albeit with impressive device performance from boron subphthalocyanine chloride (SubPc)/fullerene (C60) interface, the forming boride bonds at its interface hinders the interfacial exciton dissociation and leads to device deterioration. Due to the high electron affinity of molybdenum oxide (MoO3) film, the incorporation of MoO3 layer under the SubPc film has strong electron‐drawing property and leads to charge‐transfer complex (CTC) formation at the MoO3/SubPc interface. The resulting charge redistribution in SubPc molecules effectively suppresses the further interfacial reaction at SubPc/C60 junction. Our results provide insight for new degradation mechanisms of OPV devices and corresponding stability control via charge redistribution in the donor film.  相似文献   

16.
The silver‐embedded gelatin (AgG) thin film produced by the solution method of metal salts dissolved in gelatin is presented. Its simple fabrication method ensures the uniform distribution of Ag dots. Memory devices based on AgG exhibit good device performance, such as the ON/OFF ratio in excess of 105 and the coefficient of variation in less of 50%. To further investigate the position of filament formation and the role of each element, current sensing atomic force microscopy (CSAFM) analysis as well as elemental line profiles across the two different conditions in the LRS and HRS are analyzed. The conductive and nonconductive regions in the current map of the CSAFM image show that the conductive filaments occur in the AgG layer around Ag dots. The migration of oxygen ions and the redox reaction of carbon are demonstrated to be the driving mechanism for the resistive switching of AgG memory devices. The results show that dissolving metal salts in gelatin is an effective way to achieve high‐performance organic–electronic applications.  相似文献   

17.
18.
During the last few years, transition metal oxides (TMO) such as molybdenum tri‐oxide (MoO3), vanadium pent‐oxide (V2O5) or tungsten tri‐oxide (WO3) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long‐term stable p‐type doping of wide band gap organic materials, charge‐generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi‐transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO‐based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution‐based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.  相似文献   

19.
The dependence of the energy level alignment (ELA) on structural defects at an organic/organic heterojunction (OOH) of perfluoropentacene (PFP)‐on‐diindenoperylene (DIP) was investigated using X‐ray scattering and ultraviolet photoelectron spectroscopy. The density of structural defects near the interface between the PFP and DIP layers was varied by changing the growth temperature of the DIP film. A direct relationship was found between the defect density and the ELA at the OOH; the ELA together with the change in the electrostatic potential (quasi‐interface dipole layer) at the OOH varies systematically with the defect density near the interface. This indicates that a key factor affecting the ELA is the electrostatic potential change across the OOH interface, which is produced by electron transfer from DIP occupied gap states to PFP unoccupied gap states. These gap states originate from the defects and are effectively controlled by adjusting the growth conditions of the organic films. As a result, the ELA at OOH interfaces can be controlled by the density of structural defect, which is important for organic devices employing OOHs, such as organic photovoltaic cells.  相似文献   

20.
A polymeric semiconductor, poly(3,6-dihexyl-[2,2']bi[thieno[3,2-b]thiophene]) (PDHTT), was synthesized and tested as an active layer in organic thin film transistors (OTFTs). This semiconductor showed considerable potential for use in commercial electronic devices because of its superior characteristics, particularly its good stability. PDHTT-based OTFTs exhibited high stability in air, retaining their initial performance after exposure to 70% relative humidity for 50 days; they were also stable under repeated electrical stress and even after exposure to temperatures as high as 250 °C. We attribute the remarkable stability of PDHTT OTFTs to the relatively low highest occupied molecular orbital (5.1 eV) level of the polymer and its highly interdigitated structure in the thin film state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号