首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Controllable growth of highly crystalline transition metal dichalcogenide (TMD) patterns with regular morphology and unique edge structure is highly desired and important for fundamental research and potential applications. Here, single‐crystalline MoS2 flakes are reported with regular trigonal symmetric patterns that can be homoepitaxially grown on MoS2 monolayer via chemical vapor deposition. The highly organized MoS2 patterns are rhombohedral (3R)‐stacked with the underlying MoS2 monolayer, and their boundaries are predominantly terminated by zigzag Mo edge structure. The epitaxial MoS2 crystals can be tailored from compact triangles to fractal flakes, and the pattern formation can be explained by the anisotropic growth rates of the S and Mo edges under low sulfur chemical potential. The 3R‐stacked MoS2 pattern demonstrates strong second and third‐harmonic‐generation signals, which exceed those reported for monolayer MoS2 by a factor of 6 and 4, correspondingly. This homoepitaxial growth approach for making highly organized TMD patterns is also demonstrated for WS2.  相似文献   

18.
Large‐scale and high‐quality 2D materials have been an emerging and promising choice for use in modern chemistry and physics owing to their fascinating property profile. The past few years have witnessed inspiringly progressing development in controlled fabrication of large‐sized and single‐crystal 2D materials. Among those production methods, chemical vapor deposition (CVD) has drawn the most attention because of its fine control over size and quality of 2D materials by modulating the growth conditions. Meanwhile, Cu has been widely accepted as the most popular catalyst due to its significant merit in growing monolayer 2D materials in the CVD process. Herein, very recent advances in preparing large‐sized 2D single crystals on Cu substrates by CVD are presented. First, the unique features of Cu will be given in terms of ultralow precursor solubility and feasible surface engineering. Then, scaled growth of graphene and hexagonal boron nitride (h‐BN) crystals on Cu substrates is demonstrated, wherein different kinds of Cu surfaces have been employed. Furthermore, the growth mechanism for the growth of 2D single crystals is exhibited, offering a guideline to elucidate the in‐depth growth dynamics and kinetics. Finally, relevant issues for industrial‐scale mass production of 2D single crystals are discussed and a promising future is expected.  相似文献   

19.
20.
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large‐area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large‐scale and highly crystalline molybdenum disulfide monolayers using a solution‐processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full‐width‐half‐maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2/WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large‐sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW?1) because of the built‐in potential and the majority‐carrier transport at the n–n junction. These findings indicate an efficient pathway for the fabrication of high‐performance 2D optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号