首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adopting self‐healing, robust, and stretchable materials is a promising method to enable next‐generation wearable electronic devices, touch screens, and soft robotics. Both elasticity and self‐healing are important qualities for substrate materials as they comprise the majority of device components. However, most autonomous self‐healing materials reported to date have poor elastic properties, i.e., they possess only modest mechanical strength and recoverability. Here, a substrate material designed is reported based on a combination of dynamic metal‐coordinated bonds (β‐diketone–europium interaction) and hydrogen bonds together in a multiphase separated network. Importantly, this material is able to undergo self‐healing and exhibits excellent elasticity. The polymer network forms a microphase‐separated structure and exhibits a high stress at break (≈1.8 MPa) and high fracture strain (≈900%). Additionally, it is observed that the substrate can achieve up to 98% self‐healing efficiency after 48 h at 25 °C, without the need of any external stimuli. A stretchable and self‐healable dielectric layer is fabricated with a dual‐dynamic bonding polymer system and self‐healable conductive layers are created using polymer as a matrix for a silver composite. These materials are employed to prepare capacitive sensors to demonstrate a stretchable and self‐healable touch pad.  相似文献   

2.
An electronic (e‐) skin is expected to experience significant wear and tear over time. Therefore, self‐healing stretchable materials that are simultaneously soft and with high fracture energy, that is high tolerance of damage or small cracks without propagating, are essential requirements for the realization of robust e‐skin. However, previously reported elastomers and especially self‐healing polymers are mostly viscoelastic and lack high mechanical toughness. Here, a new class of polymeric material crosslinked through rationally designed multistrength hydrogen bonding interactions is reported. The resultant supramolecular network in polymer film realizes exceptional mechanical properties such as notch‐insensitive high stretchability (1200%), high toughness of 12 000 J m?2, and autonomous self‐healing even in artificial sweat. The tough self‐healing materials enable the wafer‐scale fabrication of robust and stretchable self‐healing e‐skin devices, which will provide new directions for future soft robotics and skin prosthetics.  相似文献   

3.
Devices integrated with self‐healing ability can benefit from long‐term use as well as enhanced reliability, maintenance and durability. This progress report reviews the developments in the field of self‐healing polymers/composites and wearable devices thereof. One part of the progress report presents and discusses several aspects of the self‐healing materials chemistry (from non‐covalent to reversible covalent‐based mechanisms), as well as the required main approaches used for functionalizing the composites to enhance their electrical conductivity, magnetic, dielectric, electroactive and/or photoactive properties. The second and complementary part of the progress report links the self‐healing materials with partially or fully self‐healing device technologies, including wearable sensors, supercapacitors, solar cells and fabrics. Some of the strong and weak points in the development of each self‐healing device are clearly highlighted and criticized, respectively. Several ideas regarding further improvement of soft self‐healing devices are proposed.  相似文献   

4.
It is challenging to fabricate mechanically super‐strong polymer composites with excellent healing capacity because of the significantly limited mobility of polymer chains. The fabrication of mechanically super‐strong polymer composites with excellent healing capacity by complexing polyacrylic acid (PAA) with polyvinylpyrrolidone (PVPON) in aqueous solution followed by molding into desired shapes is presented. The coiled PVPON can complex with PAA in water via hydrogen‐bonding interactions to produce transparent PAA–PVPON composites homogenously dispersed with nanoparticles of PAA–PVPON complexes. As healable materials, the PAA–PVPON composite materials with a glass transition temperature of ≈107.9 °C exhibit a super‐high mechanical strength, with a tensile strength of ≈81 MPa and a Young's modulus of ≈4.5 GPa. The PAA–PVPON composites are stable in water because of the hydrophobic interactions among pyrrolidone groups. The super‐high mechanical strength of the PAA–PVPON composite materials originates from the highly dense hydrogen bonds between PAA and PVPON and the reinforcement of in situ formed PAA–PVPON nanoparticles. The reversibility of the relatively weak but dense hydrogen bonds enables convenient healing of the mechanically strong PAA–PVPON composite materials from physical damage to restore their original mechanical strength.  相似文献   

5.
Self‐healing materials are able to partially or completely heal damage inflicted on them, e.g., crack formation; it is anticipated that the original functionality can be restored. This article covers the design and generic principles of self‐healing materials through a wide range of different material classes including metals, ceramics, concrete, and polymers. Recent key developments and future challenges in the field of self‐healing materials are summarised, and generic, fundamental material‐independent principles and mechanism are discussed and evaluated.  相似文献   

6.
Self‐healing polymers can significantly extend the service life of materials and structures by autonomously repairing damage. Intrinsic healing holds great promise as a design strategy to mitigate the risks of damage by delaying or preventing catastrophic failure. However, experimentally resolving the microscopic mechanisms of intrinsic repair has proven highly challenging. This work demonstrates how optical micromechanical mapping enables the quantitative imaging of these molecular‐scale dynamics with high spatiotemporal resolution. This approach allows disentangling delocalized viscoplastic relaxation and localized cohesion‐restoring rebonding processes that occur simultaneously upon damage to a self‐healing polymer. Moreover, frequency‐ and temperature‐dependent imaging provides a way to pinpoint the repair modes in the relaxation spectrum of the quiescent material. These results give rise to a complete picture of autonomous repair that will guide the rational design of improved self‐healing materials.  相似文献   

7.
Polymeric materials used in spacecraft require to be protected with an atomic oxygen (AO)‐resistant layer because AO can degrade these polymers when spacecraft serves in low earth orbit (LEO) environment. However, mechanical damage on AO‐resistant coatings can expose the underlying polymers to AO erosion, shortening their service life. In this study, the fabrication of durable AO‐resistant coatings that are capable of autonomously healing mechanical damage under LEO environment is presented. The self‐healing AO‐resistant coatings are comprised of 2‐ureido‐4[1H]‐pyrimidinone (UPy)‐functionalized polyhedral oligomeric silsesquioxane (POSS) (denoted as UPy‐POSS) that forms hydrogen‐bonded three‐dimensional supramolecular polymers. The UPy‐POSS supramolecular polymers can be conveniently deposited on polyimides by a hot pressing process. The UPy‐POSS polymeric coatings are mechanically robust, thermally stable, and transparent and have a strong adhesion toward polyimides to endure repeated bending/unbending treatments and thermal cycling. The UPy‐POSS polymeric coatings exhibit excellent AO attack resistance because of the formation of epidermal SiO2 layer after AO exposure. Due to the reversibility of the quadruple hydrogen bonds between UPy motifs, the UPy‐POSS polymeric coatings can rapidly heal mechanical damage such as cracks at 80 °C or under LEO environment to restore their original AO‐resistant function.  相似文献   

8.
Structurally dynamic polymers are recognized as a key potential to revolutionize technologies ranging from design of self‐healing materials to numerous biomedical applications. Despite intense research in this area, optimizing reactivity and thereby improving self‐healing ability at the most fundamental level pose urgent issue for wider applications of such emerging materials. Here, the authors report the first mechanistic investigation of the fundamental principle for the dependence of reactivity and self‐healing capabilities on the properties inherent to dynamic polymers by combining large‐scale computer simulation, theoretical analysis, and experimental discussion. The results allow to reveal how chain stiffness and spatial organization regulate reactivity of dynamic polymers grafted on Janus nanoparticles and mechanically mediated reaction in their reverse chemistry, and, particularly, identify that semiflexible dynamic polymers possess the optimal reactivity and self‐healing ability. The authors also develop an analytical model of blob theory of polymer chains to complement the simulation results and reveal essential scaling laws for optimal reactivity. The findings offer new insights into the physical mechanism in various systems involving reverse/dynamic chemistry. These studies highlight molecular engineering of polymer architecture and intrinsic property as a versatile strategy in control over the structural responses and functionalities of emerging materials with optimized self‐healing capabilities.  相似文献   

9.
To investigate self‐replenishing on surface‐structured composite coatings a dual simulation‐experimental approach is employed to study the decisive role of polymer‐air and polymer‐particle interfaces. Experimentally, the composite system consists of a cross‐linked polymer network with fluorinated‐dangling chains, embedding colloidal SiO2 nanoparticles which are incorporated in the network via covalent bonding. These particles provide the desired surface structure at the air‐interface before and after damage. Any damage replicates the rough surface, while the polymer layer on top of the particles serves as source of low surface energy groups which are able to reorient towards the new air‐interfaces. Using coarse‐grained simulations details of these self‐replenishing composite systems are revealed such as the minimum thickness of the polymer layer necessary for providing optimal self‐replenishing ability and the distribution profile of the dangling chains at the various interfaces. The principles and dual approach reported here may be applied to other self‐healing composite systems with applications in self‐cleaning, anti‐fouling or low adhesion materials.  相似文献   

10.
Self‐healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to “dry” elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid “dry” elastomer that is very tough with fracture energy 13500 Jm?2 comparable to that of natural rubber. Moreover, the elastomer can self‐heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self‐healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self‐healing polymers of practical usage.  相似文献   

11.
Self‐healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self‐healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self‐healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two‐photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self‐healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface‐dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self‐healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.  相似文献   

12.
Conventional self‐healing is about the recovery of shape and mechanical properties. In contrast, recovery of functional properties is still a great challenge, especially for optical functional materials, as the known self‐healing methods are incompatible with optical properties. By utilizing the synergistic effect between Au nanorods and vitrimer, the alignment of Au nanorods can be achieved in the crosslinked polymer. The optical properties of the resulting polarizing film, such as light transmittance and polarization degree, can be fully recovered without an external repair agent. With simple laser irradiation to induce the photothermal effect of Au nanorods, the shape‐memory effect of vitrimer returns the Au nanorods to their initial orientation, and the plasticity achieves in situ self‐healing of the cutting area. The self‐healing of polarizing film provides a new research direction and reference for the application of self‐healing systems in functional materials.  相似文献   

13.
As a new class of luminescent nanomaterials, carbon dots (CDs) have aroused significant interest because of their fascinating photoluminescence properties and potential applications in biological, optoelectronic, and energy‐related fields. Strikingly, embedding CDs in host matrices endow them with intriguing luminescent properties, in particular, room temperature phosphorescence and thermally activated delayed fluorescence, due to the confinement effect of the host matrix and the H‐bonding interactions between CDs and the matrix. Here, the state‐of‐the‐art strategies for introducing CDs in various host matrices are summarized, such as nanoporous materials, polyvinyl alcohol, polyurethane, potash alum, layered double hydroxides, amorphous silica, etc. The resultant luminescent properties of the composites and their emission mechanisms are discussed. Their applications in bioimaging, drug delivery/release, sensing, and anticounterfeiting are also presented. Finally, current problems and challenges of CDs‐based composites are noted for future development of such luminescent materials.  相似文献   

14.
Ion gels, composed of macromolecular networks filled by ionic liquids (ILs), are promising candidate soft solid electrolytes for use in wearable/flexible electronic devices. In this context, the introduction of a self‐healing function would significantly improve the long‐term durability of ion gels subject to mechanical loading. Nevertheless, compared to hydrogels and organogels, the self‐healing of ion gels has barely investigated been because of there being insufficient understanding of the interactions between polymers and ILs. Herein, a new class of supramolecular micellar ion gel composed of a diblock copolymer and a hydrophobic IL, which exhibits self‐healing at room temperature, is presented. The diblock copolymer has an IL‐phobic block and a hydrogen‐bonding block with hydrogen‐bond‐accepting and donating units. By combining the IL and the diblock copolymer, micellar ion gels are prepared in which the IL phobic blocks form a jammed micelle core, whereas coronal chains interact with each other via multiple hydrogen bonds. These hydrogen bonds between the coronal chains in the IL endow the ion gel with a high level of mechanical strength as well as rapid self‐healing at room temperature without the need for any external stimuli such as light or elevated temperatures.  相似文献   

15.
Recent progress on highly tough and stretchable polymer networks has highlighted the potential of wearable electronic devices and structural biomaterials such as cartilage. For some given applications, a combination of desirable mechanical properties including stiffness, strength, toughness, damping, fatigue resistance, and self‐healing ability is required. However, integrating such a rigorous set of requirements imposes substantial complexity and difficulty in the design and fabrication of these polymer networks, and has rarely been realized. Here, we describe the construction of supramolecular polymer networks through an in situ copolymerization of acrylamide and functional monomers, which are dynamically complexed with the host molecule cucurbit[8]uril (CB[8]). High molecular weight, thus sufficient chain entanglement, combined with a small‐amount dynamic CB[8]‐mediated non‐covalent crosslinking (2.5 mol%), yields extremely stretchable and tough supramolecular polymer networks, exhibiting remarkable self‐healing capability at room temperature. These supramolecular polymer networks can be stretched more than 100× their original length and are able to lift objects 2000× their weight. The reversible association/dissociation of the host–guest complexes bestows the networks with remarkable energy dissipation capability, but also facile complete self‐healing at room temperature. In addition to their outstanding mechanical properties, the networks are ionically conductive and transparent. The CB[8]‐based supramolecular networks are synthetically accessible in large scale and exhibit outstanding mechanical properties. They could readily lead to the promising use as wearable and self‐healable electronic devices, sensors and structural biomaterials.  相似文献   

16.
It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m?3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.  相似文献   

17.
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self‐healing and self‐recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self‐healing hydrogels generally either possess mechanically robust or rapid self‐healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self‐healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self‐healing hydrogels are reviewed. Specifically, methods to test self‐healing efficiencies and recoveries, mechanisms of autonomous self‐healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self‐heal better also achieve self‐healing faster, as compared to gels that only partially self‐heal. Recommendations to guide future development of self‐healing hydrogels are offered and the potential relevance of self‐healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.  相似文献   

18.
A cellulose paper is used impregnated with light‐emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick‐like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome‐emissive composite sheets, the advantage of the self‐healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light‐emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution‐based kinds of light‐emitting materials.  相似文献   

19.
Owing to their unique mechanical properties, carbon nanotubes are considered to be ideal candidates for polymer reinforcement. However, a large amount of work must be done in order to realize their full potential. Effective processing of nanotubes and polymers to fabricate new ultra‐strong composite materials is still a great challenge. This Review explores the progress that has already been made in the area of mechanical reinforcement of polymers using carbon nanotubes. First, the mechanical properties of carbon nanotubes and the system requirements to maximize reinforcement are discussed. Then, main methods described in the literature to produce and process polymer–nanotube composites are considered and analyzed. After that, mechanical properties of various nanotube–polymer composites prepared by different techniques are critically analyzed and compared. Finally, remaining problems, the achievements so far, and the research that needs to be done in the future are discussed.  相似文献   

20.
A computational fracture analysis is conducted on a self‐healing particulate composite employing a finite element model of an actual microstructure. The key objective is to quantify the effects of the actual morphology and the fracture properties of the healing particles on the overall mechanical behaviour of the (MoSi2) particle‐dispersed Yttria Stabilised Zirconia (YSZ) composite. To simulate fracture, a cohesive zone approach is utilised whereby cohesive elements are embedded throughout the finite element mesh allowing for arbitrary crack initiation and propagation in the microstructure. The fracture behaviour in terms of the composite strength and the percentage of fractured particles is reported as a function of the mismatch in fracture properties between the healing particles and the matrix as well as a function of particle/matrix interface strength and fracture energy. The study can be used as a guiding tool for designing an extrinsic self‐healing material and understanding the effect of the healing particles on the overall mechanical properties of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号