首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although nanoparticle‐based drug delivery systems have been widely explored for tumor‐targeted delivery of radioisotope therapy (RIT), the hypoxia zones of tumors on one hand can hardly be reached by nanoparticles with relatively large sizes due to their limited intratumoral diffusion ability, on the other hand often exhibit hypoxia‐associated resistance to radiation‐induced cell damage. To improve RIT treatment of solid tumors, herein, radionuclide 131I labeled human serum albumin (HSA)‐bound manganese dioxide nanoparticles (131I‐HSA‐MnO2) are developed as a novel RIT nanomedicine platform that is responsive to the tumor microenvironment (TME). Such 131I‐HSA‐MnO2 nanoparticles with suitable sizes during blood circulation show rather efficient tumor passive uptake owing to the enhanced permeability and retention effect, as well as little retention in other normal organs to minimize radiotoxicity. The acidic TME can trigger gradual degradation of MnO2 and thus decomposition of 131I‐HSA‐MnO2 nanoparticles into individual 131I‐HSA with sub‐10 nm sizes and greatly improves intratumoral diffusion. Furthermore, oxygen produced by MnO2‐triggered decomposition of tumor endogenous H2O2 would be helpful to relieve hypoxia‐associated RIT resistant for those tumors. As the results, the 131I‐HSA‐MnO2 nanoparticles appear to be a highly effective RIT agent showing great efficacy in tumor treatment upon systemic administration.  相似文献   

2.
Extreme hypoxia of tumors represents the most notable barrier against the advance of tumor treatments. Inspired by the biological nature of red blood cells (RBCs) as the primary oxygen supplier in mammals, an aggressive man‐made RBC (AmmRBC) is created to combat the hypoxia‐mediated resistance of tumors to photodynamic therapy (PDT). Specifically, the complex formed between hemoglobin and enzyme‐mimicking polydopamine, and polydopamine‐carried photosensitizer is encapsulated inside the biovesicle that is engineered from the recombined RBC membranes. The mean corpuscular hemoglobin of AmmRBCs reaches about tenfold as high as that of natural RBCs. Owing to the same origin of outer membranes, AmmRBCs share excellent biocompatibility with parent RBCs. The introduced polydopamine plays the role of the antioxidative enzymes existing inside RBCs to effectively prevent the oxygen‐carrying hemoglobin from the oxidation damage during the circulation. This biomimetic engineering can accumulate in tumors, permit in situ efficient oxygen supply, and impose strong PDT efficacy toward the extremely hypoxic tumor with complete tumor elimination. The man‐made pseudo‐RBC shows potentials as a universal oxygen‐self‐supplied platform to sensitize hypoxia‐limited tumor treatment means, including but not limited to PDT. Meanwhile, this study offers ideas to the production of artificial substitutes of packed RBCs for clinical blood transfusion.  相似文献   

3.
Natural killer (NK) cells can not only recognize and eliminate abnormal cells but also recruit and re‐educate immune cells to protect the host. However, the functions of NK cells are often limited in the immunosuppressive tumor microenvironment (TME). Here, artificial NK cells (designated as aNK) with minor limitations of TME for specific tumor killing and renegade macrophage re‐education are created. The red blood cell membrane (RBCM) cloaks perfluorohexane (PFC) and glucose oxidase (GOX) to construct the aNK. The aNK can directly kill tumor cells by exhausting glucose and generating hydrogen peroxide (H2O2). The generated H2O2 is also similar to cytokines and chemokines for recruiting immune cells and re‐educating survived macrophages to attack tumor cells. In addition, the oxygen‐carried PFC can strengthen the catalytic reaction of GOX and normalize the hypoxic TME. In vitro and in vivo experiments display that aNK with slight TME limitations exhibit efficient tumor inhibition and immune activation. The aNK will provide a new sight to treat tumor as the supplement of aggressive NK cells.  相似文献   

4.
In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self‐sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)‐poly(ε‐caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys‐Arg‐Gly‐Asp‐Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.  相似文献   

5.
Upconverting nanoparticles (UCNPs) have attracted considerable attention as potential photosensitizer carriers for photodynamic therapy (PDT) in deep tissues. In this work, a new and efficient NIR photosensitizing nanoplatform for PDT based on red‐emitting UCNPs is designed. The red emission band matches well with the efficient absorption bands of the widely used commercially available photosensitizers (Ps), benefiting the fluorescence resonance energy transfer (FRET) from UCNPs to the attached photosensitizers and thus efficiently activating them to generate cytotoxic singlet oxygen. Three commonly used photosensitizers, including chlorine e6 (Ce6), zinc phthalocyanine (ZnPc) and methylene blue (MB), are loaded onto the alpha‐cyclodextrin‐modified UCNPs to form Ps@UCNPs complexes that efficiently produce singlet oxygen to kill cancer cells under 980 nm near‐infrared excitation. Moreover, two different kinds of drugs are co‐loaded onto these nanoparticles: chemotherapy drug doxorubicin and PDT agent Ce6. The combinational therapy based on doxorubicin (DOX)‐induced chemotherapy and Ce6‐triggered PDT exhibits higher therapeutic efficacy relative to the individual means for cancer therapy in vitro.  相似文献   

6.
It is hard for current radionuclide therapy to render solid tumors desirable therapeutic efficacy owing to insufficient tumor‐targeted delivery of radionuclides and severe tumor hypoxia. In this study, a biocompatible hybrid protein nanoreactor composed of human serum albumin (HSA) and catalase (CAT) molecules is constructed via glutaraldehyde‐mediated crosslinking. The obtained HSA‐CAT nanoreactors (NRs) show retained and well‐protected enzyme stability in catalyzing the decomposition of H2O2 and enable efficient labeling of therapeutic radionuclide iodine‐131 (131I). Then, it is uncovered that such HSA‐CAT NRs after being intravenously injected into tumor‐bearing mice exhibit efficient passive tumor accumulation as vividly visualized under the fluorescence imaging system and gamma camera. As the result, such HSA‐CAT NRs upon tumor accumulation would significantly attenuate tumor hypoxia by decomposing endogenous H2O2 produced by cancer cells to molecular oxygen, and thereby remarkably improve the therapeutic efficacy of radionuclide 131I. This study highlights the concise preparation of biocompatible protein nanoreactors with efficient tumor homing and hypoxia attenuation capacities, thus enabling greatly improved tumor radionuclide therapy with promising potential for future clinical translation.  相似文献   

7.
Poor drug penetration into tumor cells and tissues is a worldwide difficulty in cancer therapy. A strategy is developed for virion‐like membrane‐breaking nanoparticles (MBNs) to smoothly accomplish tumor‐activated cell‐and‐tissue dual‐penetration for surmounting impermeable drug‐resistant cancer. Tailor‐made dendritic arginine‐rich peptide prodrugs are designed to mimic viral protein transduction domains and globular protein architectures. Attractively, these protein mimics self‐assemble into virion‐like nanoparticles in aqueous solution, having highly ordered secondary structure. Tumor‐specific acidity conditions would activate the membrane‐breaking ability of these virion‐like nanoparticles to perforate artificial and natural membrane systems. As expected, MBNs achieve highly efficient drug penetration into drug‐resistant human ovarian (SKOV3/R) cancer cells. Most importantly, the well‐organized MBNs can pass through endothelial/tumor cells and spread from one cell to another one. Intravenous injection of MBNs into nude mice bearing impermeable SKOV3/R tumors suggests that the MBNs can recognize the tumor tissue after prolonged blood circulation, evoke the membrane‐breaking function for robust transvascular extravasation, and penetrate into the deep tumor tissue. This work provides the first demonstration of sophisticated molecular and supramolecular engineering of virion‐like MBNs to realize the long‐awaited cell‐and‐tissue dual‐penetration, contributing to the development of a brand‐new avenue for dealing with incurable cancers.  相似文献   

8.
Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia‐associated radiation resistance is a well‐known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation‐induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high‐Z elements to absorb radiation rays (e.g. X‐ray) can act as radio‐sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo‐radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia‐associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of ‘advanced materials' for enhanced cancer RT.  相似文献   

9.
Following the “detect‐to‐treat” strategy, by biological engineering, the emerging upconversion nanoparticles (UCNPs) have become one of the most promising inorganic nanomedicines, and their biomedical applications have gradually shifted from multimodal tumor imaging to highly efficient cancer therapy. The past few years have witnessed a three‐stage development of UCNP‐based nanomedicines. On one hand, UCNPs can optimize each clinical treatment tool (chemotherapy, photodynamic therapy (PDT), radiotherapy (RT)) by controlled drug delivery/release, near‐infrared (NIR)‐excited deep PDT, and radiosensitization, respectively, all of which contribute greatly to the optimized treatment efficacy along with minimized side effects. On the other hand, several individual treatments can be “smartly” integrated into a single UCNP‐based nanotheranostic system for multimodal synergetic therapy, which can further improve the overall therapeutic effectiveness. Especially, UCNPs provide more‐effective strategies for overcoming tumor hypoxia, thus leading to an ideal treatment efficacy for complete eradication of solid tumors. Finally, the critical issues regarding the future development of UCNPs are discussed to promote the clinic‐translational applications of UCNP‐based nanomedicines, as well as realization of our “one drug fits all” dream.  相似文献   

10.
Nanomedicine (NM) cannot penetrate deeply into solid tumors, which is partly attributed to the heterogeneous microenvironment and high interstitial fluid pressure of solid tumors. To improve NM efficacy, there has been tremendous effort developing tumor‐penetrating NMs by miniaturizing NM sizes or controlling NM surface properties. But progress along the direction of developing tumor penetrating nanoparticle has been slow and improvement of the overall antitumor efficacy has been limited. Herein, a novel strategy of inhibiting solid tumor with high efficiency by dual‐functional, nontumor‐penetrating NM is demonstrated. The intended NM contains 5,6‐dimethylxanthenone‐4‐acetic acid (DMXAA), a vascular‐disrupting agent, and doxorubicin (DOX), a cytotoxic drug. Upon arriving at the target tumor site, sustained release of DMXAA from NMs results in disruption of tumor vessel functions, greatly inhibiting the interior tumor cells by cutting off nutritional supply. Meanwhile, the released DOX kills the residual cells at the tumor exterior regions. The in vivo studies demonstrate that this dual‐functional, nontumor penetrating NM exhibits superior anticancer activity, revealing an alternative strategy of effective tumor growth inhibition.  相似文献   

11.
Efficient renal clearance is of fundamentally important property of nanoparticles for their in vivo biomedical applications. In this work, we report the successful synthesis of ultra‐small Pd nanosheets (SPNS) with an average diameter of 4.4 nm and their application in photothermal cancer therapy using a near infrared laser. The ultra‐small Pd nanosheets have strong optical absorption in the NIR region and high photothermal conversion efficiency (52.0%) at 808 nm. After being surface‐functionalized with reduced glutathione (GSH), the SPNS‐GSH was administered to mice to investigate the biodistribution, photothermal efficacy and tumor ablation in vivo. The in vivo photothermal therapy studies clearly demonstrate that surface modification with GSH allows the nanosheets to exhibit prolonged blood circulation and thus high accumulation in tumors. Upon 808 nm NIR irradiation, the tumors can be completely ablated. More importantly, with the size below the renal filtration limit (<10 nm), the GSHylated Pd nanosheets can be nicely cleared from body through the renal excretion route and into urine. Together with the high efficacy of NIR photothermal therapy, the unique renal clearance properties make the ultra‐small Pd nanosheets promising for practical use in photothermal cancer therapy.  相似文献   

12.
In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody‐modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) shows promise in reaching sub‐centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR‐II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide‐dye (CP‐IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor‐to‐normal tissue signal ratio (T/NT > 8). Importantly, the CP‐IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody‐dye probes. Further, with NIR‐II emitting CP‐IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR‐II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.  相似文献   

13.
External radiotherapy is extensively used in clinic to destruct tumors by locally applied ionizing‐radiation beams. However, the efficacy of radiotherapy is usually limited by tumor hypoxia‐associated radiation resistance. Moreover, as a local treatment technique, radiotherapy can hardly control tumor metastases, the major cause of cancer death. Herein, core–shell nanoparticles based poly(lactic‐co‐glycolic) acid (PLGA) are fabricate, by encapsulating water‐soluble catalase (Cat), an enzyme that can decompose H2O2 to generate O2, inside the inner core, and loading hydrophobic imiquimod (R837), a Toll‐like‐receptor‐7 agonist, within the PLGA shell. The formed PLGA‐R837@Cat nanoparticles can greatly enhance radiotherapy efficacy by relieving the tumor hypoxia and modulating the immune‐suppressive tumor microenvironment. The tumor‐associated antigens generated postradiotherapy‐induced immunogenic cell death in the presence of such R837‐loaded adjuvant nanoparticles will induce strong antitumor immune responses, which together with cytotoxic T‐lymphocyte associated protein 4 (CTLA‐4) checkpoint blockade will be able to effectively inhibit tumor metastases by a strong abscopal effect. Moreover, a long term immunological memory effect to protect mice from tumor rechallenging is observed post such treatment. This work thus presents a unique nanomedicine approach as a next‐generation radiotherapy strategy to enable synergistic whole‐body therapeutic responses after local treatment, greatly promising for clinical translation.  相似文献   

14.
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA‐200 (miR‐200) has been reported to inhibit metastasis in cancer cells. Herein, pH‐sensitive and peptide‐modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR‐200, respectively. These peptides include one cell‐penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria‐targeting peptide. The peptide‐modified nanoparticles are further coated with a pH‐sensitive PEG‐lipid derivative with an imine bond. These specially‐designed nanoparticles exhibit pH‐responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR‐200 by SLN further increases the cytotoxicity of irinotecan‐loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β‐catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC‐bearing mice, the in vivo results further indicate that irinotecan and miR‐200 in pH‐responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β‐catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH‐responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.  相似文献   

15.
Immune checkpoint blockade (ICB) is demonstrating great potential in cancer immunotherapy nowadays. Yet, the low response rate to ICB remains an urgent challenge for tumor immunotherapy. A pH and matrix metalloproteinase dual‐sensitive micellar nanocarrier showing spatio‐temporally controlled release of anti‐PD‐1 antibody (aPD‐1) and paclitaxel (PTX) in solid tumors is prepared to realize synergistic cancer chemoimmunotherapy. Antitumor immunity can be activated by PTX‐induced immunogenic cell death (ICD), while aPD‐1 blocks the PD‐1/PD‐L1 axis to suppress the immune escape due to PTX‐induced PD‐L1 up‐regulation, thus resulting in a synergistic antitumor chemoimmunotherapy. Through decoration with a sheddable polyethylene glycol (PEG) shell, the nanodrug may better accumulate in tumors to boost the synergistic antitumor treatment in a mouse melanoma model. The present study demonstrates a potent antitumor chemoimmunotherapy utilizing tumor microenvironment‐sensitive micelles bearing a sheddable PEG layer to mediate site‐specific sequential release of aPD‐1 and PTX.  相似文献   

16.
Stable solid‐state red fluorescence from organosilane‐functionalized carbon dots (CDs) with sizes around 3 nm is reported for the first time. Meanwhile, a novel method is also first reported for the efficient construction of dual‐fluorescence morphologies. The quantum yield of these solid‐state CDs and their aqueous solution is 9.60 and 50.7%, respectively. The fluorescence lifetime is 4.82 ns for solid‐state CDs, and 15.57 ns for their aqueous solution. These CDs are detailedly studied how they can exhibit obvious photoluminescence overcoming the self‐quenching in solid state. Luminescent materials are constructed with dual fluorescence based on as‐prepared single emissive CDs (red emission) and nonfluorescence media (starch, Al2O3, and RnOCH3COONa), with the characteristic peaks located at nearly 440 and 600 nm. Tunable photoluminescence can be successfully achieved by tuning the mass ratio of CDs to solid matrix (such as starch). These constructed dual‐fluorescence CDs/starch composites can also be applied in white light‐emitting diodes with UV chips (395 nm), and oxygen sensing.  相似文献   

17.
Photodynamic therapy (PDT) is a promising technique for cancer therapy, providing good therapeutic efficacy with minimized side effect. However, the lack of oxygen supply in the hypoxic tumor site obviously restricts the generation of singlet oxygen (1O2), thus limiting the efficacy of PDT. So far, the strategies to improve PDT efficacy usually rely on complicated nanosystems, which require sophisticated design or complex synthetic procedure. Herein, iodine‐rich semiconducting polymer nanoparticles (SPN‐I) for enhanced PDT, using iodine‐induced intermolecular heavy‐atom effect to elevate the 1O2 generation, are designed and prepared. The nanoparticles are composed of a near‐infrared (NIR) absorbing semiconducting polymer (PCPDTBT) serving as the photosensitizer and source of fluorescence signal, and an iodine‐grafted amphiphilic diblock copolymer (PEG‐PHEMA‐I) serving as the 1O2 generation enhancer and nanocarrier. Compared with SPN composed of PEG‐b‐PPG‐b‐PEG and PCPDTBT (SPN‐P), SPN‐I can enhance the 1O2 generation by 1.5‐fold. In addition, SPN‐I have high X‐ray attenuation coefficient because of the high density of iodine in PEG‐PHEMA‐I, providing SPN‐I the ability of use with computed tomography (CT) and fluorescence dual‐modal imaging. The study thus provides a simple nanotheranostic platform composed of two components for efficient CT/fluorescence dual‐modal imaging‐guided enhanced PDT.  相似文献   

18.
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual‐modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria‐targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria‐targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy.  相似文献   

19.
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide‐bond‐containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual‐responsiveness is reported. These diselenide‐bridged MSNs can encapsulate cytotoxic RNase A into the 8–10 nm internal pores via electrostatic interaction and release the payload via a matrix‐degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer‐cell‐derived membrane fragments, these bioinspired RNase A‐loaded MSNs exhibit homologous targeting and immune‐invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti‐cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell‐membrane‐coated, dual‐responsive degradable MSNs represent a promising platform for the delivery of bio‐macromolecules such as protein and nucleic acid therapeutics.  相似文献   

20.
Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2‐[3‐(1,3‐dicarboxypropyl) ureido] pentanedioic acid (DUPA)‐conjugated ligand and bis‐isoindigo‐based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII‐DUPA SPN) as a prostate‐specific membrane antigen (PSMA)‐targeted probe for prostate cancer imaging in the NIR‐II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single‐cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII‐DUPA SPN to PSMA‐positive prostate cancer. At organ level, PA tomographic imaging of BTII‐DUPA SPN in the NIR‐II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII‐DUPA SPN demonstrates selective accumulation and retention in the PSMA‐positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII‐DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号