首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Block copolymers (BCP) can self‐assemble into nanoscale patterns with a wide variety of applications in the semiconductor industry. The self‐assembly of BCPs is commonly accomplished by solvent vapor or thermal annealing, but generally these methods require long time (few hours) to obtain nanostructured thin films. In this contribution, a new and ultrafast method (using microwaves) is proposed—high temperature solvent vapor annealing (HTSVA), combining solvent vapor annealing with thermal annealing, to achieve fast and controllable self‐assembly of amphiphilic BCP thin films. A promising carbohydrate‐based BCP capable of forming cylindrical patterns with some of the smallest feature sizes is used for demonstrating how to obtain a highly ordered vertical cylindrical pattern with sub‐10 nm feature sizes in few seconds by HTSVA. HTSVA provides not only a simple way to achieve BCP fast self‐assembly in practical applications but also a tool to study the self‐assembly behavior of BCPs under extreme conditions.  相似文献   

2.
The self‐assembly of block copolymers in thin films provides an attractive approach to patterning 5–100 nm structures. Cross‐linking and photopatterning of the self‐assembled block copolymer morphologies provide further opportunities to structure such materials for lithographic applications, and to also enhance the thermal, chemical, or mechanical stability of such nanostructures to achieve robust templates for subsequent fabrication processes. Here, model lamellar‐forming diblock copolymers of polystyrene and poly(methyl methacrylate) with an epoxide functionality are synthesized by atom transfer radical polymerization. We demonstrate that self‐assembly and cross‐linking of the reactive block copolymer materials in thin films can be decoupled into distinct, controlled process steps using solvent annealing and thermal treatment/ultraviolet exposure, respectively. Conventional optical lithography approaches can also be applied to the cross‐linkable block copolymer materials in thin films and enable simultaneous structure formation across scales—micrometer scale patterns achieved by photolithography and nanostructures via self‐assembly of the block copolymer. Such materials and processes are thus shown to be capable of self‐assembling distinct block copolymers (e.g., lamellae of significantly different periodicity) in adjacent regions of a continuous thin film.  相似文献   

3.
The thin‐film directed self‐assembly of molecular building blocks into oriented nanostructure arrays enables next‐generation lithography at the sub‐5 nm scale. Currently, the fabrication of inorganic arrays from molecular building blocks is restricted by the limited long‐range order and orientation of the materials, as well as suitable methodologies for creating lithographic templates at sub‐5 nm dimensions. In recent years, higher‐order liquid crystals have emerged as functional thin films for organic electronics, nanoporous membranes, and templated synthesis, which provide opportunities for their use as lithographic templates. By choosing examples from these fields, recent progress toward the design of molecular building blocks is highlighted, with an emphasis on liquid crystals, to access sub‐5 nm features, their directed self‐assembly into oriented thin films, and, importantly, the fabrication of inorganic arrays. Finally, future challenges regarding sub‐5 nm patterning with liquid crystals are discussed.  相似文献   

4.
One of the key challenges in nanotechnology is to control a self‐assembling system to create a specific structure. Self‐organizing block copolymers offer a rich variety of periodic nanoscale patterns, and researchers have succeeded in finding conditions that lead to very long range order of the domains. However, the array of microdomains typically still contains some uncontrolled defects and lacks global registration and orientation. Recent efforts in templated self‐assembly of block copolymers have demonstrated a promising route to control bottom‐up self‐organization processes through top‐down lithographic templates. The orientation and placement of block‐copolymer domains can be directed by topographically or chemically patterned templates. This templated self‐assembly method provides a path towards the rational design of hierarchical device structures with periodic features that cover several length scales.  相似文献   

5.
The directed self‐assembly of diblock copolymer chains (poly(1,1‐dimethyl silacyclobutane)‐block‐polystyrene, PDMSB‐b‐PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double‐wave pattern formation is reported within the 3D‐nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent‐vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub‐100‐nm‐thick PDMSB‐b‐PS films.  相似文献   

6.
Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo‐supramolecular block copolymers—copolymers in which the blocks are linked together by a metal–ligand complex—have seen important progresses, allowing better control over the synthetic strategies for various architectures, and providing a better understanding of the parameters governing their self‐assembly. We review here recent developments on the synthesis and self‐assembly of such materials achieved in this field.  相似文献   

7.
The use of self‐assembled block copolymers (BCPs) for the fabrication of electronic and energy devices has received a tremendous amount of attention as a non‐traditional approach to patterning integrated circuit elements at nanometer dimensions and densities inaccessible to traditional lithography techniques. The exquisite control over the dimensional features of the self‐assembled nanostructures (i.e., shape, size, and periodicity) is one of the most attractive properties of BCP self‐assembly. Harmonic spatial arrangement of the self‐assembled nanoelements at desired positions on the chip may offer a new strategy for the fabrication of electronic and energy devices. Several recent reports show the great promise in using BCP self‐assembly for practical applications of electronic and energy devices, leading to substantial enhancements of the device performance. Recent progress is summarized here, with regard to the performance enhancements of non‐volatile memory, electrical sensor, and energy devices enabled by directed BCP self‐assembly.  相似文献   

8.
Magnetic control has been a prosperous and powerful contactless approach in arraying materials into high‐order nanostructures. However, it is tremendously difficult to control organic polymers in this way on account of the weak magnetic response. The preparation of block copolymers (BCPs) with high magnetostatic energy is reported here, relying on an effective electrostatic coupling between paramagnetic ions and polymer side chains. As a result, the BCPs undergo a magnetically directed self‐assembly to form microphase‐segregated nanostructures with long‐range order. It is emphasized that such a precisely controlled alignment of the BCPs is performed upon a single commercial magnet with low‐intensity field (0.35 Tesla). This strategy is profoundly easy‐to‐handle in contrast to routine electromagnetic methods with high‐intensity field (5–10 Tesla). More significantly, the paramagnetic metal component in the BCP samples can be smartly removed, providing a template effect with a preservation of the directed self‐assembled nanofeatures for patterning follow‐up functionalized species through the original binding site.  相似文献   

9.
Layered MoS2 is a prospective candidate for use in energy harvesting, valleytronics, and nanoelectronics. Its properties strongly related to its stacking configuration and the number of layers. Due to its atomically thin nature, understanding the atomic‐level and structural modifications of 2D transition metal dichalcogenides is still underdeveloped, particularly the spatial control and selective precision. Therefore, the development of nanofabrication techniques is essential. Here, an atomic‐scale approach used to sculpt 2D few‐layer MoS2 into lateral heterojunctions via in situ scanning/transmission electron microscopy (STEM/TEM) is developed. The dynamic evolution is tracked using ultrafast and high‐resolution filming equipment. The assembly behaviors inherent to few‐layer 2D‐materials are observed during the process and included the following: scrolling, folding, etching, and restructuring. Atomic resolution STEM is employed to identify the layer variation and stacking sequence for this new 2D‐architecture. Subsequent energy‐dispersive X‐ray spectroscopy and electron energy loss spectroscopy analyses are performed to corroborate the elemental distribution. This sculpting technique that is established allows for the formation of sub‐10 nm features, produces diverse nanostructures, and preserves the crystallinity of the material. The lateral heterointerfaces created in this study also pave the way for the design of quantum‐relevant geometries, flexible optoelectronics, and energy storage devices.  相似文献   

10.
A nanolithographic approach based on hierarchical peptide self‐assembly is presented. An aromatic peptide of N‐(t‐Boc)‐terminated triphenylalanine is designed from a structural motif for the β‐amyloid associated with Alzheimer's disease. This peptide adopts a turnlike conformation with three phenyl rings oriented outward, which mediate intermolecular ππ stacking interactions and eventually facilitate highly crystalline bionanosphere assembly with both thermal and chemical stability. The self‐assembled bionanospheres spontaneously pack into a hexagonal monolayer at the evaporating solvent edge, constituting evaporation‐induced hierarchical self‐assembly. Metal nanoparticle arrays or embossed Si nanoposts could be successfully created from the hexagonal bionanosphere array masks in conjunction with a conventional metal‐evaporation or etching process. Our approach represents a bionanofabrication concept that biomolecular self‐assembly is hierarchically directed to establish a straightforward nanolithography compatible with conventional device‐fabrication processes.  相似文献   

11.
Self‐powered flexible photodetectors without an external power source can meet the demands of next‐generation portable and wearable nanodevices; however, the performance is far from satisfactory becuase of the limited match of flexible substrates and light‐sensitive materials with proper energy levels. Herein, a novel self‐powered flexible fiber‐shaped photodetector based on double‐twisted perovskite–TiO2–carbon fiber and CuO–Cu2O–Cu wire is designed and fabricated. The device shows an ultrahigh detectivity of 2.15 × 1013 Jones under the illumination of 800 nm light at zero bias. CuO–Cu2O electron block bilayer extends response range of perovskite from 850 to 1050 nm and suppresses dark current down to 10?11 A. The fast response speed of less than 200 ms is nearly invariable after dozens of cycles of bending at the extremely 90 bending angle, demonstrating excellent flexibility and bending stability. These parameters are comparable and even better than reported flexible and even rigid photodetectors. The present results suggest a promising strategy to design photodetectors with integrated function of self‐power, flexibility, and broadband response.  相似文献   

12.
Self‐standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto‐)electronic and photonic devices as well as in micro‐electromechanical systems. To date, large‐area and self‐standing nanoelectrode arrays assembled on flexible substrates have not been reported. Here the fabrication of a hollow nanomesh scaffold on glass and plastic substrates with a large surface area over 1 mm2 and ultralow leakage current density (≈1–10 pA mm?2 @ 2 V) across the empty scaffold is demonstrated. Thanks to the continuous sub‐micrometer space formed in between the nanomesh and the bottom electrode, highly crystalline and dendritic domains of 6,13‐bis(triisopropylsilylethinyl)pentacene growing within the hollow cavity can be observed. The high degree of order at the supramolecular level leads to efficient charge and exciton transport; the photovoltaic detector supported on flexible polyethylene terephthalate substrates exhibits an ultrafast photoresponse time as short as 8 ns and a signal‐to‐noise ratio approaching 105. Such a hollow scaffold holds great potential as a novel device architecture toward flexible (opto‐)electronic applications based on self‐assembled micro/nanocrystals.  相似文献   

13.
Colloidal elements have historically played a key role in “bottom‐up” self‐assembly processes for nanofabrication. However, these elementary components can also interact with light to generate complex intensity distributions and facilitate “top‐down” lithography. Here, a nanolithography technique is demonstrated based on oblique illuminations of colloidal particles to fabricate hollow‐core 3D nanostructures with complex symmetry. The light–particle interaction generates an angular light distribution as governed by Mie scattering, which can be compounded by multiple illuminations to sculpt novel 3D structures in the underlying photoresist. The fabricated geometry can be controlled by the particle parameters and illumination configurations, enabling the fabrication of a large variety of asymmetric hollow nanostructures. The proposed technique has high pattern versatility, is low cost and high throughput, and can find potential application in nanoneedles, nanonozzles, and materials with anisotropic properties.  相似文献   

14.
Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light–matter interactions within the semiconductor. Here, a germanium‐thin‐film‐based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub‐picosecond decay constant of 670 fs is attributed to the presence of trap‐assisted recombination sites in the thermally evaporated germanium film.  相似文献   

15.
On the basis of DNA self‐assembly, a thermal responsive polymer polypropylene oxide (PPO) is evenly inserted into a rigid 3D DNA network for the study of single molecular self‐collapsing process. At low temperature, PPO is hydrophilic and dispersed uniformly in the network; when elevating temperature, PPO becomes hydrophobic but can only collapse on itself because of the fixation and separation of DNA rigid network. The process has been characterized by rheological test and Small Angle X‐Ray Scattering test. It is also demonstrated that this self‐collapsing process is reversible and it is believed that this strategy could provide a new tool to study the nucleation‐growing process of block copolymers.  相似文献   

16.
While self‐assembled molecular building blocks could lead to many next‐generation functional organic nanomaterials, control over the thin‐film morphologies to yield monolithic sub‐5 nm patterns with 3D orientational control at macroscopic length scales remains a grand challenge. A series of photoresponsive hybrid oligo(dimethylsiloxane) liquid crystals that form periodic cylindrical nanostructures with periodicities between 3.8 and 5.1 nm is studied. The liquid crystals can be aligned in‐plane by exposure to actinic linearly polarized light and out‐of‐plane by exposure to actinic unpolarized light. The photoalignment is most efficient when performed just under the clearing point of the liquid crystal, at which the cylindrical nanostructures are reoriented within minutes. These results allow the generation of highly ordered sub‐5 nm patterns in thin films at macroscopic length scales, with control over the orientation in a noncontact fashion.  相似文献   

17.
Exploring the ordering mechanism and dynamics of self‐assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self‐assembling mechanism and kinetics of silicon‐containing 3‐arm star‐block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self‐assembly using topographically patterned substrates. The ordering process of the star‐block copolymer within fabricated topographic patterns with PS‐functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well‐ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self‐assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top‐down and bottom‐up approaches.  相似文献   

18.
Protein cages are an interesting class of biomaterials with potential applications in bionanotechnology. Therefore, substantial effort is spent on the development of capsule‐forming designer polypeptides with a tailor‐made assembly profile. The expanded assembly profile of a triblock copolypeptide consisting of a metal ion chelating hexahistidine‐tag, a stimulus‐responsive elastin‐like polypeptide block, and a pH‐responsive morphology‐controlling viral capsid protein is presented. The self‐assembly of this multi‐responsive protein‐based block copolymer is triggered by the addition of divalent metal ions. This assembly process yields monodisperse nanocapsules with a 20 nm diameter composed of 60 polypeptides. The well‐defined nanoparticles are the result of the emergent properties of all the blocks of the polypeptide. These results demonstrate the feasibility of hexahistidine‐tags to function as supramolecular cross‐linkers. Furthermore, their potential for the metal ion‐mediated encapsulation of hexahistidine‐tagged proteins is shown.  相似文献   

19.
In this report, we highlight the development of polymers as 1D photonic crystals and subsequently place special emphasis on the activities in self‐assembled block copolymers as a promising platform material for new photonic crystals. We review recent progress, including the use of plasticizer and homopolymer blends of diblock copolymers to increase periodicity and the role of self‐assembly in producing 2D and 3D photonic crystals. The employment of inorganic nanoparticles to increase the dielectric contrast and the application of a biasing field during self‐assembly to control the long‐range domain order and orientation are examined, as well as in‐situ tunable materials via a mechanochromic materials system. Finally, the inherent optical anisotropy of extruded polymer films and side‐chain liquid‐crystalline polymers is shown to provide greater degrees of freedom for further novel optical designs.  相似文献   

20.
This review discusses the potential of block copolymer type macromolecular building blocks for the preparation of self‐assembled materials. Three different classes of block copolymer type architectures will be distinguished: (i) coil–coil diblock copolymers, (ii) rod–coil diblock copolymers, and (iii) rod–coil diblock oligomers. The basic principles that underlie the self‐assembly of each of these different building blocks will be discussed. These theoretical considerations are complemented with examples from recent literature that illustrate the potential of the different types of block copolymers to prepare (functional) supramolecular materials. Finally, several strategies will be presented that could allow the preparation of stimuli‐sensitive self‐assembled materials, i.e., materials whose properties can be reversibly manipulated under the action of appropriate external stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号