首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The film morphology is extremely significant for solution processed perovskite devices. Through fine morphology engineering without using any additives or further posttreatments, a full‐coverage and high quantum yield perovskite film has been achieved based on one‐step spin‐coating method. The morphologies and film characteristics of MAPbBr3 with different MABr:PbBr2 starting material ratios are in‐depth investigated by scanning electron microscopy, atomic force microscopy, X‐ray diffraction, photoluminescence, and time resolved photoluminescence. High performance organometal halide perovskite light‐emitting didoes (PeLEDs) based on simple device structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/perovskite/TPBi/Ca/Al are demonstrated. The green PeLED based on MAPbBr3 shows a maximum luminance of 8794 cd m?2 (at 7.3 V) and maximum current efficiency of 5.1 cd A?1 (at 5.1 V). Furthermore, a class of hybrid PeLEDs by adjusting the halide ratios of methylammonium lead halide (MAPbX3, where X is Cl, Br, or I) are also demonstrated at room temperature. These mix‐halogenated PeLEDs show bright luminance (above 100 cd m?2) with narrow and clean emission bands over the wide color gamut.  相似文献   

2.
Perovskite nanoparticle composite films with capability of high‐resolution patterning (≥2 µm) and excellent resistance to various aqueous and organic solvents are prepared by in situ photosynthesis of acrylate polymers and formamidinium lead halide (FAPbX3) nanoparticles. Both positive‐ and negative‐tone patterns of FAPbX3 nanoparticles are created by controlling the size exclusive flow of nanoparticles in polymer networks. The position of nanoparticles is spatially controlled in both lateral and vertical directions. The composite films show high photoluminescence quantum yield (up to 44%) and broad color tunability in visible region (λpeak = 465–630 nm).  相似文献   

3.
Hybrid metal halides containing perovskite layers have recently shown great potential for applications in solar cells and light‐emitting diodes. Such compounds exhibit quantum confinement effects leading to tunable optical and electronic properties. Thus, broadband white‐light emission has been observed from diverse metal halides and, owing to high color rendering index, high thermal stability, and low‐temperature solution processability, these materials have attracted interest for application in solid‐state lighting. However, the reported quantum yields for white photoluminescence (PLQY) remain low (i.e., in the range 0.5–9%) and no approach has shown to successfully increase the intensity of this emission. Here, it is demonstrated that the quantum efficiencies of hybrid metal halides can be greatly enhanced if they contain a polymorph of the [PbX4]2? perovskite‐type layers: the [PbX4]2? post‐perovskite‐type chains showing a PLQY of 45%. Different piperazines lead to a hybrid lead halide with either perovskite layers or post‐perovskite chains influencing strongly the presence of self‐trapped states for excitons. It is anticipated that this family of hybrid lead halide materials could enhance all the properties requiring the stabilization of trapped excitons.  相似文献   

4.
Despite extensive efforts to mimic the fascinating adhesion capability of geckos, the development of reversible adhesives underwater has long been lagging. The appearance of mussels‐inspired dopamine chemistry has provided the feasibility to fabricate underwater adhesives; however, for such a system, imitating the reversible and fast dynamic attachment/detachment mechanism of gecko feet still remains unsolved. Here, by synthesizing a thermoresponsive copolymer of poly(dopamine methacrylamide‐co‐methoxyethyl‐acrylate‐coN‐isopropyl acrylamide) and then decorating it onto mushroom‐shaped poly(dimethylsiloxane) pillar arrays, a novel underwater thermoresponsive gecko‐like adhesive (TRGA) can be fabricated, yielding high adhesion during the attachment state above the lower critical solution temperature (LCST) of the copolymer, yet low adhesion during the detachment state below the LCST of the copolymer. By integrating the Fe3O4 nanoparticles into the TRGA, TRGAs responsive to near‐infrared laser radiation can be engineered, which can be successfully used for rapid and reversible remote control over adhesion so as to capture and release heavy objects underwater because of the contrast force change of both the normal adhesion force and the lateral friction force. It is also demonstrated that the material can be assembled on the tracks of an underwater mobile device to realize controllable movement. This opens up the door for developing intelligent underwater gecko‐like locomotion with dynamic attachment/detachment ability.  相似文献   

5.
The performance of perovskite nanocrystals (NCs) in optoelectronics and photocatalysis is severely limited by the presence of large amounts of crystal boundaries in NCs film that greatly restricts energy transfer. Creating heterostructures based on perovskite NCs and 2D materials is a common approach to improve the energy transport at the perovskite/2D materials interface. Herein, methylamine lead bromide (MAPbBr3, MA: CH3NH3+) perovskite NCs are homogeneously deposited on highly conductive few‐layer MXene (Ti3C2Tx) nanosheets to form heterostructures through an in situ solution growth method. An optimal mixed solvent ratio is essential to realize the growth of perovskite NCs on Ti3C2Tx nanosheets. Time‐resolved photoluminescence spectroscopy, transient absorption spectroscopy, and the photoresponse of electron‐ and hole‐only photoelectric conversion devices reveal the interfacial energy transfer behavior within MAPbBr3/Ti3C2Tx heterostructures. The present investigation may provide a useful guide toward use of halide perovskite/2D material heterostructures in applications such as photocatalysis as well as optoelectronics.  相似文献   

6.
The development of the photostable higher‐order multiphoton‐excited (MPE) upconversion single microcrystalline material is fundamentally and technologically important, but very challenging. Here, up to five‐photon excited luminescence in a host–guest metal–organic framework (MOF) and perovskite quantum dot (QD) hybrid single crystal ZJU‐28?MAPbBr3 is shown via an in situ growth approach. Such a MOF strategy not only results in a high QD loading concentration, but also significantly diminishes the aggregation‐caused quenching (ACQ) effect, provides effective surface passivation, and greatly reduces the contact of the QDs with the external bad atmosphere due to the confinement effect and protection of the framework. These advantages make the resulting ZJU‐28?MAPbBr3 single crystals possess high PLQY of ≈51.1%, a high multiphoton action cross‐sections that can rival the current highest record (measured in toluene solution), and excellent photostability. These findings liberate the excellent luminescence and nonlinear optical properties of perovskite QDs from the solution system to the solid single‐crystal system, which provide a new avenue for the exploitation of high‐performance multiphoton excited hybrid single microcrystal for future optoelectronic and micro–nano photonic integration applications.  相似文献   

7.
Metal halide perovskite materials have attracted great attention owing to their fascinating optoelectronic characteristics and low cost fabrication via facile solution processing. One of the potential applications of these materials is to employ them as color‐conversion layers (CCLs) for visible blue light to achieve full‐color displays. However, obtaining thick perovskite films to realize complete color conversion is a key challenge. Here, the fabrication of micrometer‐level thick CsPbBr3 perovskite films is presented through a facile vacuum drying approach. An efficient green photoconversion is realized in a 3.8 µm thick film from blue light @ 463 nm. For a back luminance of 1000 cd m?2, the brightness of the resulting green emission can reach as high as 200 cd m?2. Furthermore, only ≈2% of decay in brightness is observed when the films are tested after 18 days of exposure to ambient environment. In addition, a potential design is also proposed for full‐color displays with perovskite materials incorporated as CCLs.  相似文献   

8.
It is reported on a reactive magnetron sputtering‐based deposition method to synthesize, at room temperature, photochromic nanocomposite thin films consisting of Ag nanoparticles sandwiched between nanoporous TiO2 layers. The fabrication process is compatible with large‐scale production and functional flexible substrates. It is shown that when TiO2 is deposited in the metallic mode, the formation of Ag metal nanoparticles induces localized surface plasmon resonances in the visible range and therefore the as‐deposited samples are colored. In contrast, when TiO2 is deposited in the compound mode, the trilayer samples are colorless because silver oxidizes during TiO2 deposition. It is demonstrated that the colorless samples can be colored under ultraviolet (UV) laser exposure at 244 nm due to the reduction of oxidized silver and the formation of metallic Ag nanoparticles. Moreover, irradiation at 647 nm wavelength of colored samples (as‐prepared or after UV exposure) gives rise to changes in the particle morphology that strongly modifies the film absorbance and results in a color transition from blue to orange. The choice of the irradiation wavelength allows controlling the color saturation of the sample up to the complete discoloration by using a visible laser at 488 nm. All these photochromic mechanisms are repeatable during cyclic processes.  相似文献   

9.
Whereas organic–inorganic hybrid perovskite nanocrystals (PNCs) have remarkable potential in the development of optoelectronic materials, their relatively poor chemical and colloidal stability undermines their performance in optoelectronic devices. Herein, this issue is addressed by passivating PNCs with a class of chemically addressable ligands. The robust ligands effectively protect the PNC surfaces, enhance PNC solution processability, and can be chemically addressed by thermally induced crosslinking or radical‐induced polymerization. This thin polymer shield further enhances the photoluminescence quantum yields by removing surface trap states. Crosslinked methylammonium lead bromide (MAPbBr3) PNCs are applied as active materials to build light‐emitting diodes that have low turn‐on voltages and achieve a record luminance of over 7000 cd m?2, around threefold better than previous reported MA‐based PNC devices. These results indicate the great potential of this ligand passivation approach for long lifespan, highly efficient PNC light emitters.  相似文献   

10.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

11.
Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large‐scale low‐cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3NH3PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state‐of‐the‐art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology‐controlled photoluminescence yield, structural coloring, optical‐ information encryption, and lasing.  相似文献   

12.
The interaction of the neurotransmitter dopamine is reported with a single particle white light‐emitting (WLE) quantum dot complex (QDC). The QDC is composed of yellow emitting ZnO quantum dots (Qdots) and blue emitting Zn(MSA)2 complex (MSA = N‐methylsalicylaldimine) synthesized on their surfaces. Sensing is achieved by the combined changes in the visual luminescence color from white to blue, chromaticity color coordinates from (0.31, 0.33) to (0.24, 0.23) and the ratio of the exponents (αonoff) of on/off probability distribution (from 0.24 to 3.21) in the blinking statistics of WLE QDC. The selectivity of dopamine toward ZnO Qdots, present in WLE QDC, helps detect ≈13 dopamine molecules per Qdot. Additionally, the WLE QDC exhibits high sensitivity, with a limit of detection of 3.3 × 10?9m (in the linear range of 1–100 × 10?9m ) and high selectivity in presence of interfering biological species. Moreover, the single particle on–off bilking statistics based detection strategy may provide an innovative way for ultrasensitive detection of analytes.  相似文献   

13.
Double halide perovskites are a class of promising semiconductors applied in photocatalysis, photovoltaic devices, and emitters to replace lead halide perovskites, owing to their nontoxicity and chemical stability. However, most double perovskites always exhibit low photoluminescence quantum efficiency (PLQE) due to the indirect bandgap structure or parity‐forbidden transition problem, limiting their further applications. Herein, the self‐trapped excitons emission of Cs2NaInCl6 by Sb‐doping, showing a blue emission with high PLQE of 84%, is improved. Further, Sb/Mn codoped Cs2NaInCl6 nanocrystals are successfully synthesized by the hot‐injection method, showing a tunable dual‐emission covering the white‐light spectrum. The studies of PL properties and dynamics reveal that an energy transfer process can occur between the self‐trapped excitons and dopants (Mn2+). The work provides a new perspective to design novel lead‐free double perovskites for realizing a unique white‐light emission.  相似文献   

14.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have demonstrated excellent optical properties and an encouraging potential for optoelectronic applications; however, mixed‐halide perovskites, especially CsPb(Cl/Br)3 NCs, still show lower photoluminescence quantum yields (PL QY) than the corresponding single‐halide materials. Herein, anhydrous oxalic acid is used to post‐treat CsPb(Cl/Br)3 NCs in order to initially remove surface defects and halide vacancies, and thus, to improve their PL QY from 11% to 89% for the emission of 451 nm. Furthermore, due to the continuous chelating reaction with the oxalate ion, chloride anions from the mixed‐halide CsPb(Cl/Br)3 perovskite NCs could be extracted, and green emitting CsPbBr3 NCs with PL QY of 85% at 511 nm emission are obtained. Besides being useful to improve the emission of CsPb(Cl/Br)3 NCs, the oxalic acid treatment strategy introduced here provides a further tool to adjust the distribution of halide anions in mixed‐halide perovskites without using any halide additives.  相似文献   

15.
Self‐healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self‐healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self‐healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two‐photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self‐healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface‐dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self‐healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.  相似文献   

16.
All present designs of perovskite light‐emitting diodes (PeLEDs) stem from polymer light‐emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, “insulator–perovskite–insulator” (IPI) architecture tailored to PeLEDs. As examples of FAPbBr3 and MAPbBr3, it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr3, a 30‐fold enhancement in the current efficiency of IPI‐structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole‐injection layer is achieved—from 0.64 to 20.3 cd A?1—while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr3, compared with the control device, both current efficiency and lifetime of IPI‐structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A?1 and 96 h. This IPI architecture represents a novel strategy for the design of light‐emitting didoes based on various perovskites with high efficiencies and stabilities.  相似文献   

17.
Following the proof‐of‐concept experiment in the unit structure level, photonic crystal (PhC) phosphors—structurally engineered phosphor materials based on the nanophotonics principles—are integrated with a blue light‐emitting diode (LED) chip to demonstrate a compact and efficient white light source. Red‐ or green‐emitting CdSe‐based colloidal quantum dots (CQDs) are coated on a Si3N4 thin‐film grating to fabricate PhC phosphors. The underlying PhC structure is designed such that the photonic band‐edge modes at the zone center (k∣∣ = 0) are tuned to the energy of the blue excitation photons. By progressively stacking the PhC phosphor plates on a blue LED chip, the blue, green, and red emission intensities can be tightly controlled to obtain white light with the desired properties. The chromaticity coordinates, (0.332, 0.341), and correlated color temperature, 5500 K, are obtained from a stack of 3 red and 11 green PhC phosphor plates; in contrast, a stack of 5 red and 16 green reference phosphor plates are required to generate a similar white light. Overall, the PhC phosphors produce 8% higher total emission intensity out of 33% less amount of CQDs than the reference phosphors.  相似文献   

18.
Lead‐(Pb‐) halide perovskite nanocrystals (NCs) are interesting nanomaterials due to their excellent optical properties, such as narrow‐band emission, high photoluminescence (PL) efficiency, and wide color gamut. However, these NCs have several critical problems, such as the high toxicity of Pb, its tendency to accumulate in the human body, and phase instability. Although Pb‐free metal (Bi, Sn, etc.) halide perovskite NCs have recently been reported as possible alternatives, they exhibit poor optical and electrical properties as well as abundant intrinsic defect sites. For the first time, the synthesis and optical characterization of cesium ytterbium triiodide (CsYbI3) cubic perovskite NCs with highly uniform size distribution and high crystallinity using a simple hot‐injection method are reported. Strong excitation‐independent emission and high quantum yields for the prepared NCs are verified using photoluminescence measurements. Furthermore, these CsYbI3 NCs exhibit potential for use in organic–inorganic hybrid photodetectors as a photoactive layer. The as‐prepared samples exhibit clear on–off switching behavior as well as high photoresponsivity (2.4 × 103 A W?1) and external quantum efficiency (EQE, 5.8 × 105%) due to effective exciton dissociation and charge transport. These results suggest that CsYbI3 NCs offer tremendous opportunities in electronic and optoelectronic applications, such as chemical sensors, light emitting diodes (LEDs), and energy conversion and storage devices.  相似文献   

19.
Here, a simplified synthesis of graphitic carbon nitride quantum dots (g‐C3N4‐QDs) with improved solution and electroluminescent properties using a one‐pot methylamine intercalation–stripping method (OMIM) to hydrothermally exfoliate QDs from bulk graphitic carbon nitride (g‐C3N4) is presented. The quantum dots synthesized by this method retain the blue photoluminescence with extremely high fluorescent quantum yield (47.0%). As compared to previously reported quantum dots, the g‐C3N4‐QDs synthesized herein have lower polydispersity and improved solution stability due to high absolute zeta‐potential (?41.23 mV), which combine to create a much more tractable material for solution processed thin film fabrication. Spin coating of these QDs yields uniform films with full coverage and low surface roughness ideal for quantum dot light‐emitting diode (QLED) fabrication. When incorporated into a functional QLED with OMIM g‐C3N4‐QDs as the emitting layer, the LED demonstrates ≈60× higher luminance (605 vs 11 Cd m?2) at lower operating voltage (9 vs 21 V), as compared to the previously reported first generation g‐C3N4 QLEDs, though further work is needed to improve device stability.  相似文献   

20.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号