首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic–inorganic halide perovskite (OHP) materials, for example, CH3NH3PbI3 (MAPbI3), have attracted significant interest for applications such as solar cells, photodectors, light‐emitting diodes, and lasers. Previous studies have shown that charged defects can migrate in perovskites under an electric field and/or light illumination, potentially preventing these devices from practical applications. Understanding and control of the defect generation and movement will not only lead to more stable devices but also new device concepts. Here, it is shown that the formation/annihilation of iodine vacancies (VI's) in MAPbI3 films, driven by electric fields and light illumination, can induce pronounced resistive switching effects. Due to a low diffusion energy barrier (≈0.17 eV), the VI's can readily drift under an electric field, and spontaneously diffuse with a concentration gradient. It is shown that the VI diffusion process can be suppressed by controlling the affinity of the contact electrode material to I? ions, or by light illumination. An electrical‐write and optical‐erase memory element is further demonstrated by coupling ion migration with electric fields and light illumination. These results provide guidance toward improved stability and performance of perovskite‐based optoelectronic systems, and can lead to the development of solid‐state devices that couple ionics, electronics, and optics.  相似文献   

2.
As the fastest developing photovoltaic device, perovskite solar cells have achieved an extraordinary power conversion efficiency (PCE) of 25.3% under AM 1.5 illumination. However, few studies have been devoted to perovskite solar cells harvesting artificial light, owing to the great challenge in the simultaneous manipulation of bandgap‐adjustable perovskite materials, corresponding matched energy band structure of carrier transport materials, and interfacial defects. Herein, through systematic morphology, composition, and energy band engineering, high‐quality Cs0.05MA0.95PbBrxI3?x perovskite as the light absorber and NbyTi1?yO2 (Nb:TiO2) as the electron transport material with an ideal energy band alignment are obtained simultaneously. The theoretical‐limit‐approaching record PCEs of 36.3% (average: 34.0 ± 1.2%) under light‐emitting diode (LED, warm white) and 33.2% under fluorescent lamp (cold white) are achieved simultaneously, as well as a PCE of 19.5% (average: 18.9 ± 0.3%) under solar illumination. An integrated energy conversion and storage system based on an artificial light response solar cell and sodium‐ion battery is established for diverse practical applications, including a portable calculator, quartz clock, and even environmental monitoring equipment. Over a week of stable operation shows its great practical potential and provides a new avenue to promote the commercialization of perovskite photovoltaic devices via integration with ingenious electronic devices.  相似文献   

3.
Nano‐floating gate memory (NFGM) devices are transistor‐type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p‐type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle–particle interactions. CoFe2O4 NP‐based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read Ion/Ioff) of ≈2.98 × 103, and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high‐performance organic memory devices.  相似文献   

4.
Ordered 1D metal oxide structure is desirable in thin film solar cells owing to its excellent charge collection capability. However, the electron transfer in 1D electron transporting layer (ETL)‐based devices is still limited to a submicrometer‐long pathway that is vertical to the substrate. Here, an innovative closely packed rutile TiO2 nanowire (CRTNW) network parallel to the facet of fluorine‐doped tin oxide (FTO) substrate is reported, which can serve as a 1D nanoscale electron transport pathway for efficient perovskite solar cells (PSCs). The PSC constructed using newly prepared CRTNW ETL achieves an impressive power conversion efficiency of 21.10%, which can be attributed to the facilitated electron extraction induced by the favorable junctions formed at FTO/ETL and ETL/perovskite interfaces and also the suppressed charge recombination originating from improved perovskite morphology with large grains, flat surface, and good surface coverage. The bifacial contact junctions engineering also enables large‐area device fabrication. The PSC with 1 cm2 aperture yields an efficiency of 19.50% under one sun illumination. This work highlights the significance of controlling the orientation and packing density of the ordered 1D oxide nanostructured thin films for highly efficient optoelectronic devices in a large‐scale manner.  相似文献   

5.
Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large‐scale deployment of PSCs, these components need to be replaced with cost‐effective and robust ones that maintain high efficiency while ascertaining long‐term operational stability. Here, a simple and low‐cost PSC architecture employing dopant‐free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full‐sun illumination at 60 °C. In addition, the CuSCN/carbon‐based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro‐MeOTAD/Au based devices degrade severely.  相似文献   

6.
Hybrid organic–inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution‐processable photovoltaic and optoelectronic devices. In this work, an all‐solution‐based technique in ambient environment for highly sensitive and high‐speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W?1, a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W?1, and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA‐protected devices are stable for over 30 days. This work demonstrates a cost‐effective fabrication technique for high‐performance flexible photodetectors and opens opportunities for research advancements in broadband and large‐scale flexible perovskite‐based optoelectronic devices.  相似文献   

7.
Currently, photovoltaic/electroluminescent (PV/EL) perovskite bifunctional devices (PBDs) exhibit poor performance due to defects and interfacial misalignment of the energy band. Interfacial energy‐band engineering between the perovskite and hole‐transport layer (HTL) is introduced to reduce energy loss, through adding corrosion‐free 3,3′‐(2,7‐dibromo‐9H‐fluorene‐9,9‐diyl) bis(n,n‐dimethylpropan‐1‐amine) (FN‐Br) into a HTL free of lithium salt. This strategy can turn the n‐type surface of perovskite into p‐type and thus correct the misalignment to form a well‐defined N–I–P heterojunction. The tailored PBD achieves a high PV efficiency of up to 21.54% (certified 20.24%) and 4.3% EL external quantum efficiency. Free of destructive additives, the unencapsulated devices maintain >92% of their initial PV performance for 500 h at maximum power point under standard air mass 1.5G illumination. This strategy can serve as a general guideline to enhance PV and EL performance of perovskite devices while ensuring excellent stability.  相似文献   

8.
Organic field‐effect transistor (OFET) memory devices made using highly stable iron‐storage protein nanoparticle (NP) multilayers and pentacene semiconductor materials are introduced. These transistor memory devices have nonvolatile memory properties that cause reversible shifts in the threshold voltage (Vth) as a result of charge trapping and detrapping in the protein NP (i.e., the ferritin NP with a ferrihydrite phosphate core) gate dielectric layers rather than the metallic NP layers employed in conventional OFET memory devices. The protein NP‐based OFET memory devices exhibit good programmable memory properties, namely, large memory window ΔVth (greater than 20 V), a fast switching speed (10 μs), high ON/OFF current ratio (above 104), and good electrical reliability. The memory performance of the devices is significantly enhanced by molecular‐level manipulation of the protein NP layers, and various biomaterials with heme FeIII/FeII redox couples similar to a ferrihydrite phosphate core are also employed as charge storage dielectrics. Furthermore, when these protein NP multilayers are deposited onto poly(ethylene naphthalate) substrates coated with an indium tin oxide gate electrode and a 50‐nm‐thick high‐k Al2O3 gate dielectric layer, the approach is effectively extended to flexible protein transistor memory devices that have good electrical performance within a range of low operating voltages (<10 V) and reliable mechanical bending stability.  相似文献   

9.
Optoelectronic devices based on metal halide perovskites, including solar cells and light‐emitting diodes, have attracted tremendous research attention globally in the last decade. Due to their potential to achieve high carrier mobilities, organic–inorganic hybrid perovskite materials can enable high‐performance, solution‐processed field‐effect transistors (FETs) for next‐generation, low‐cost, flexible electronic circuits and displays. However, the performance of perovskite FETs is hampered predominantly by device instabilities, whose origin remains poorly understood. Here, perovskite single‐crystal FETs based on methylammonium lead bromide are studied and device instabilities due to electrochemical reactions at the interface between the perovskite and gold source–drain top contacts are investigated. Despite forming the contacts by a gentle, soft lamination method, evidence is found that even at such “ideal” interfaces, a defective, intermixed layer is formed at the interface upon biasing of the device. Using a bottom‐contact, bottom‐gate architecture, it is shown that it is possible to minimize such a reaction through a chemical modification of the electrodes, and this enables fabrication of perovskite single‐crystal FETs with high mobility of up to ≈15 cm2 V?1 s?1 at 80 K. This work addresses one of the key challenges toward the realization of high‐performance solution‐processed perovskite FETs.  相似文献   

10.
The improving intrinsic stability, determining the life span of devices, is a challenging task in the industrialization of inverted perovskite solar cells. The most important prerequisite for boosting intrinsic stability is high-quality perovskite films deposition. Here, a molecule, N-(2-pyridyl)pivalamide (NPP) is utilized, as a multifunctional resonance bridge between poly(triarylamine) (PTAA) and perovskite film to regulate the perovskite film quality and promote hole extraction for enhancing the device intrinsic stability. The pyridine groups in NPP couple with the phenyl groups in PTAA through π−π stacking to improve hole extraction capacities and minimize interfacial charge recombination, and the resonance linkages (N CO) in NPP dynamically modulate the perovskite buried defects through strong Pb O bonds based on the fast self-adaptive tautomerization between resonance forms (N CO and N+C O). Because of the combined effect of the reduction defect density and improved energy level in the perovskite buried interfaces as well as the optimized crystal orientation in perovskite film enabled by the NPP substrate, the devices based on NPP-grown perovskite films show an efficiency approaching 20% with negligible hysteresis. More impressively, the unencapsulated device displays start-of-the-art intrinsic photostability, operating under continuous 1-sun illumination for 2373 h at 65 °C without loss of PCE.  相似文献   

11.
Resistive random access memories can potentially open a niche area in memory technology applications by combining the advantages of the long endurance of dynamic random‐access memory and the long retention time of flash memories. Recently, resistive memory devices based on organo‐metal halide perovskite materials have demonstrated outstanding memory properties, such as a low‐voltage operation and a high ON/OFF ratio; such properties are essential requirements for low power consumption in developing practical memory devices. In this study, a nonhalide lead source is employed to deposit perovskite films via a simple single‐step spin‐coating method for fabricating unipolar resistive memory devices in a cross‐bar array architecture. These unipolar perovskite memory devices achieve a high ON/OFF ratio up to 108 with a relatively low operation voltage, a large endurance, and long retention times. The high‐yield device fabrication based on the solution‐process demonstrated here will be a step toward achieving low‐cost and high‐density practical perovskite memory devices.  相似文献   

12.
Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low‐cost solution‐processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high‐performance photodetectors based on all‐inorganic cesium lead halide perovskite (CsPbIxBr3–x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm?2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite‐based photodetectors. Moreover, the photodetectors exhibit outstanding long‐term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all‐inorganic metal halide perovskite‐based photodetectors have great application potential for optical communication.  相似文献   

13.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

14.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.  相似文献   

15.
This work reports for the first time a highly efficient single-crystal cesium tin triiodide (CsSnI3) perovskite nanowire solar cell. With a perfect lattice structure, low carrier trap density (≈5 × 1010 cm−3), long carrier lifetime (46.7 ns), and excellent carrier mobility (>600 cm2 V−1 s−1), single-crystal CsSnI3 perovskite nanowires enable a very attractive feature for flexible perovskite photovoltaics to power active micro-scale electronic devices. Using CsSnI3 single-crystal nanowire in conjunction with highly conductive wide bandgap semiconductors as front-surface-field layers, an unprecedented efficiency of 11.7% under AM 1.5G illumination is achieved. This work demonstrates the feasibility of all-inorganic tin-based perovskite solar cells via crystallinity and device-structure improvement for the high-performance, and thus paves the way for the energy supply to flexible wearable devices in the future.  相似文献   

16.
Methylammonium lead halide perovskites have attracted enormous attentions due to their superior optical and electronic properties. However, the photodetection at near‐infrared telecommunication wavelengths is hardly achievable because of their wide bandgaps. Here, this study demonstrates, for the first time, novel perovskite–erbium silicate nanosheet hybrid photodetectors with remarkable spectral response at ≈1.54 µm. Under the near‐infrared light illumination, the erbium silicate nanosheets can give strong upconversion luminescence, which will be well confined in their cavities and then be efficiently coupled into and simultaneously excite the adjacent perovskite to realize photodetection. These devices own prominent responsivity and external quantum efficiency as high as previously reported microscale silicon‐based subbandgap photodetectors. More importantly, the photoresponse speed (≈900 µs) is faster by five orders than the ever reported hot electron silicon‐based photodetectors at telecommunication wavelengths. The realization of perovskite‐based telecommunication band photodetectors will open new chances for applications in advanced integrated photonics devices and systems.  相似文献   

17.
Organic–inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large‐grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single‐crystal counterparts. Here, a facile topotactic‐oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial‐crystallographic texture, micrometer‐grain morphology, high crystallinity, low trap density (≈4 × 1014 cm?3), and unprecedented 9 GHz charge‐carrier mobility (71 cm2 V?1 s?1), is demonstrated. TOA‐perovskite‐based n‐i‐p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse‐scan efficiency (19.7%). The TOA process is also applicable for growing other state‐of‐the‐art perovskite alloys, including triple‐cation and mixed‐halide perovskites.  相似文献   

18.
Controlled growth of high‐quality patterned perovskite films on a large scale is essentially required for the application of this class of materials in functional integrated devices and systems. Herein, graphene‐assisted hydrophilic–hydrophobic surface‐induced growth of Cs‐doped FAPbI3 perovskite films with well‐patterned shapes by a one‐step spin‐coating process is developed. Such a facile fabrication technique is compatible with a range of spin‐coated perovskite materials, perovskite manufacturing processes, and substrates. By employing this growing method, controllable perovskite photodetector arrays are realized, which have not only prominent photoresponse properties with a responsivity and specific detectivity of 4.8 AW?1 and 4.2 × 1012 Jones, respectively, but also relatively small pixel‐to‐pixel variation. Moreover, the photodetectors array can function as an effective visible light image sensor with a decent spatial resolution. Holding the above merits, the proposed technique provides a convenient and effective pathway for large‐scale preparation of patterned perovskite films for multifunctional application purposes.  相似文献   

19.
Van der Waals materials and their heterostructures provide a versatile platform to explore new device architectures and functionalities beyond conventional semiconductors. Of particular interest is anti‐ambipolar behavior, which holds potentials for various digital electronic applications. However, most of the previously conducted studies are focused on hetero‐ or homo‐ p–n junctions, which suffer from a weak electrical modulation. Here, the anti‐ambipolar transport behavior and negative transconductance of MoTe2 transistors are reported using a graphene/h‐BN floating‐gate structure to dynamically modulate the conduction polarity. Due to the asymmetric electrical field regulating effect on the recombination and diffusion currents, the anti‐ambipolar transport and negative transconductance feature can be systematically controlled. Consequently, the device shows an unprecedented peak resistance modulation factor (≈5 × 103), and effective photoexcitation modulation with distinct threshold voltage shift and large photo on/off ratio (≈104). Utilizing this large modulation effect, the voltage‐transfer characteristics of an inverter circuit variant are further studied and its applications in Schmitt triggers and multivalue output are further explored. These properties, in addition to their proven nonvolatile storage, suggest that such 2D heterostructured devices display promising perspectives toward future logic applications.  相似文献   

20.
The stability of a tin‐based perovskite solar cell is a major challenge. Here, hybrid tin‐based perovskite solar cells in a new series that incorporate a nonpolar organic cation, guanidinium (GA+), in varied proportions into the formamidinium (FA+) tin triiodide perovskite (FASnI3) crystal structure in the presence of 1% ethylenediammonium diiodide (EDAI2) as an additive, are reported. The device performance is optimized at a precursor ratio (GAI:FAI) of 20:80 to attain a power conversion efficiency (PCE) of 8.5% when prepared freshly; the efficiencies continuously increase to attain a record PCE of 9.6% after storage in a glove‐box environment for 2000 h. The hybrid perovskite works stably under continuous 1 sun illumination for 1 h and storage in air for 6 days without encapsulation. Such a tin‐based perovskite passes all harsh standard tests, and the efficiency of a fresh device, 8.3%, is certified. The great performance and stability of the device reported herein attains a new milestone for lead‐free perovskite solar cells on a path toward commercial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号