首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new 2:1 donor (D):acceptor (A) mixed‐stacked charge‐transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene‐based D and A molecules is designed and synthesized. Uniform 2D‐type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non‐negligible oscillator strength of the S1 transition, and rigidified 2D‐type structure. Moreover, this luminescent 2D‐type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10?4 cm2 V?1 s?1). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active‐layered organic light‐emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed‐stacked CT cocrystals in OLET applications.  相似文献   

2.
Ambipolar organic field‐effect transistors (OFETs) are vital for the construction of high‐performance all‐organic digital circuits. The bilayer p–n junction structure, which is composed of separate layers of p‐ and n‐type organic semiconductors, is considered a promising way to realize well‐balanced ambipolar charge transport. However, this approach suffers from severely reduced mobility due to the rough interface between the polycrystalline thin films of p‐ and n‐type organic semiconductors. Herein, 2D molecular crystal (2DMC) bilayer p–n junctions are proposed to construct high‐performance and well‐balanced ambipolar OFETs. The molecular‐scale thickness of the 2DMC ensures high injection efficiency and the atomically flat surface of the 2DMC leads to high‐quality p‐ and n‐layer interfaces. Moreover, by controlling the layer numbers of the p‐ and n‐type 2DMCs, the electron and hole mobilities are tuned and well‐balanced ambipolar transport is accomplished. The hole and electron mobilities reach up to 0.87 and 0.82 cm2 V?1 s?1, respectively, which are the highest values among organic single‐crystalline double‐channel OFETs measured in ambient air. This work provides a general route to construct high‐performance and well‐balanced ambipolar OFETs based on available unipolar materials.  相似文献   

3.
High‐performance unipolar n‐type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron‐deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide‐functionalized thiazoles, 5,5′‐bithiazole‐4,4′‐dicarboxyimide (BTzI) and 2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all‐acceptor homopolymers, and the resulting polymer poly(2,2′‐bithiazolothienyl‐4,4′,10,10′‐tetracarboxydiimide) (PDTzTI) exhibits unipolar n‐type transport with a remarkable electron mobility (μe) of 1.61 cm2 V?1 s?1, low off‐currents (Ioff) of 10?10?10?11 A, and substantial current on/off ratios (Ion/Ioff) of 107?108 in organic thin‐film transistors. The all‐acceptor homopolymer shows distinctive advantages over prevailing n‐type donor?acceptor copolymers, which suffer from ambipolar transport with high Ioffs > 10?8 A and small Ion/Ioffs < 105. The results demonstrate that the all‐acceptor approach is superior to the donor?acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics.  相似文献   

4.
Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V?1 s?1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V?1 s?1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.  相似文献   

5.
High mobility ambipolar conjugated polymers are seriously absent regardless their great potential for flexible and printed plastic devices and circuits. Here, ambipolar polymers with ultrahigh balanced hole and electron mobility are developed via a two‐step C? H activation strategy. Diketopyrrolopyrrole‐benzothiadiazole‐diketopyrrolopyrrole (DBD) and its copolymers with thiophene/selenophene units (short as PDBD‐T and PDBD‐Se) are used as examples. PDBD‐Se exhibits highly efficient ambipolar transport with hole and electron mobility up to 8.90 and 7.71 cm2 V?1 s?1 in flexible organic field‐effect transistors, presenting a milestone for ambipolar copolymer screening. Based on this performance metrics and good solubility, PDBD‐Se is investigated as inkjet‐printable semiconductor ink for organic complementary logic circuits. Under ambient processing, maximum hole and electron mobilities reach 6.70 and 4.30 cm2 V?1 s?1, respectively. Printed complementary inverter and NAND gates with transition voltages near VDD/2 are fabricated, providing an easy‐handling, general material for printed electronics and logic.  相似文献   

6.
Conjugated polymers, which can be fabricated by simple processing techniques and possess excellent electrical performance, are key to the fabrication of flexible polymer field‐effect transistors (PFETs) and integrated circuits. Herein, two ambipolar conjugated polymers based on (3E,7E)‐3,7‐bis(2‐oxo‐1H‐pyrrolo[2,3‐b]pyridin‐3(2H)‐ylidene)benzo[1,2‐b:4,5‐b′]difuran‐2,6(3H,7H)‐dione and dithienylbenzothiadiazole units, namely PNBDOPV‐DTBT and PNBDOPV‐DTF2BT , are developed. Both copolymers possess almost planar conjugated backbone conformations and suitable highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels (?5.64/?4.38 eV for PNBDOPV‐DTBT and ?5.79/?4.48 eV for PNBDOPV‐DTF2BT ). Note that PNBDOPV‐DTBT has a glass transition temperature (140 °C) lower than the deformation temperature of polyethylene terephthalate (PET), meaning well‐ordered molecular packing can be obtained on PET substrate before its deformation in mild thermal annealing process. Flexible PFETs based on PNBDOPV‐DTBT fabricated on PET substrates exhibit high and well‐balanced hole/electron mobilities of 4.68/4.72 cm2 V?1 s?1 under ambient conditions. After the further modification of Au source/drain electrodes with 1‐octanethiol self‐assembled monolayers, impressively high and well‐balanced hole/electron mobilities up to 5.97/7.07 cm2 V?1 s?1 are achieved in the flexible PFETs. Meanwhile, flexible complementary‐like inverters based on PNBDOPV‐DTBT on PET substrate also afford a much high gain of 148. The device performances of both the PFETs and inverters are among the highest values for ambipolar conjugated polymers reported to date.  相似文献   

7.
The development of low‐cost, flexible electronic devices is subordinated to the advancement in solution‐based and low‐temperature‐processable semiconducting materials, such as colloidal quantum dots (QDs) and single‐walled carbon nanotubes (SWCNTs). Here, excellent compatibility of QDs and SWCNTs as a complementary pair of semiconducting materials for fabrication of high‐performance complementary metal‐oxide‐semiconductor (CMOS)‐like inverters is demonstrated. The n‐type field effect transistors (FETs) based on I? capped PbS QDs (V th = 0.2 V, on/off = 105, S S‐th = 114 mV dec?1, µ e = 0.22 cm2 V?1 s?1) and the p‐type FETs with tailored parameters based on low‐density random network of SWCNTs (V th = ?0.2 V, on/off > 105, S S‐th = 63 mV dec?1, µ h = 0.04 cm2 V?1 s?1) are integrated on the same substrate in order to obtain high‐performance hybrid inverters. The inverters operate in the sub‐1 V range (0.9 V) and have high gain (76 V/V), large maximum‐equal‐criteria noise margins (80%), and peak power consumption of 3 nW, in combination with low hysteresis (10 mV).  相似文献   

8.
Due to the intriguing optical and electronic properties, 2D materials have attracted a lot of interest for the electronic and optoelectronic applications. Identifying new promising 2D materials will be rewarding toward the development of next generation 2D electronics. Here, palladium diselenide (PdSe2), a noble‐transition metal dichalcogenide (TMDC), is introduced as a promising high mobility 2D material into the fast growing 2D community. Field‐effect transistors (FETs) based on ultrathin PdSe2 show intrinsic ambipolar characteristic. The polarity of the FET can be tuned. After vacuum annealing, the authors find PdSe2 to exhibit electron‐dominated transport with high mobility (µ e (max) = 216 cm2 V?1 s?1) and on/off ratio up to 103. Hole‐dominated‐transport PdSe2 can be obtained by molecular doping using F4‐TCNQ. This pioneer work on PdSe2 will spark interests in the less explored regime of noble‐TMDCs.  相似文献   

9.
Construction of high‐performance organic light‐emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6‐diphenylanthracene (DPA) and 2,6‐di(2‐naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high‐quality DPA and dNaAnt single crystals as active layers, high‐efficiency single‐component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p‐ and n‐ conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA‐OLETs and 1.75% for dNaAnt‐based OLETs, respectively, which are the highest EQE values for single‐component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m?2 with current densities up to 1.3 and 8.4 kA cm?2 are also achieved for DPA‐ and dNaAnt‐based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next‐generation rapid development of high‐performance single‐component OLETs and their related organic integrated electro‐optical devices.  相似文献   

10.
Black phosphorus carbide (b‐PC) is a new family of layered semiconducting material that has recently been predicted to have the lightest electrons and holes among all known 2D semiconductors, yielding a p‐type mobility (≈105 cm2 V?1 s?1) at room temperature that is approximately five times larger than the maximum value in black phosphorus. Here, a high‐performance composite few‐layer b‐PC field‐effect transistor fabricated via a novel carbon doping technique which achieved a high hole mobility of 1995 cm2 V?1 s?1 at room temperature is reported. The absorption spectrum of this material covers an electromagnetic spectrum in the infrared regime not served by black phosphorus and is useful for range finding applications as the earth atmosphere has good transparency in this spectral range. Additionally, a low contact resistance of 289 Ω µm is achieved using a nickel phosphide alloy contact with an edge contacted interface via sputtering and thermal treatment.  相似文献   

11.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

12.
Two novel conjugated polymers incorporating quinoidal thiophene are successfully synthesized. By combining 1D nuclear magnetic resonance (NMR) and 2D nuclear Overhauser effect spectroscopy analyses, the isomeric form of the major quinoid monomer is clearly identified as the asymmetric Z, E‐configuration. The quinoidal polymers are synthesized via Stille polymerization with thiophene or bithiophene. Both quinoidal polymers exhibit the low band gap of 1.45 eV and amphoteric redox behavior, indicating extended conjugation owing to the quinoidal backbone. These quinoidal polymers show ambipolar behaviors with high charge carrier mobilities when applied in organic field‐effect transistors. In addition, the radial alignment of polymer chains achieved by off‐center spin‐coating leads to further improvement of device performance, with poly(quinoidal thiophene–bithiophene) exhibiting a high hole mobility of 8.09 cm2 V?1 s?1, which is the highest value among the quinoidal polymers up to now. Microstructural alteration via thermal annealing or off‐center spin‐coating is found to beneficially affect charge transport. The enhancement of crystallinity with strong π–π interactions and the nanofibrillar structure arising from planar well‐delocalized quinoid units is considered to be responsible for the high charge carrier mobility.  相似文献   

13.
Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post‐silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom‐thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p‐ and n‐type semiconductors is essential for various device applications, such as complementary metal‐oxide‐semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4‐nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field‐effect transistors (FETs) to p‐ and n‐type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V?1s?1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X‐ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption ( ≈ 0.17 nW). Furthermore, a p‐n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC‐based advanced electronics.  相似文献   

14.
Over the past three decades, significant research efforts have focused on improving the charge carrier mobility of organic thin‐film transistors (OTFTs). In recent years, a commonly observed nonlinearity in OTFT current–voltage characteristics, known as the “kink” or “double slope,” has led to widespread mobility overestimations, contaminating the relevant literature. Here, published data from the past 30 years is reviewed to uncover the extent of the field‐effect mobility hype and identify the progress that has actually been achieved in the field of OTFTs. Present carrier‐mobility‐related challenges are identified, finding that reliable hole and electron mobility values of 20 and 10 cm2 V?1 s?1, respectively, have yet to be achieved. Based on the analysis, the literature is then reviewed to summarize the concepts behind the success of high‐performance p‐type polymers, along with the latest understanding of the design criteria that will enable further mobility enhancement in n‐type polymers and small molecules, and the reasons why high carrier mobility values have been consistently produced from small molecule/polymer blend semiconductors. Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next‐generation organic semiconductors.  相似文献   

15.
While high‐performance p‐type semiconducting polymers are widely reported, their n‐type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high‐quality n‐type polymers with number‐average molecular weight up to 105 g mol?1. Furthermore, by sp2‐nitrogen atoms (sp2‐N) substitution, three new n‐type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp2‐N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp2‐N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine‐tailed self‐assembled monolayer (SAM) is smoothly formed on a Si/SiO2 substrate by a simple spin‐coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n‐type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm2 V?1 s?1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈107 is demonstrated for the pSNT‐based devices, which are among the highest values for unipolar n‐type semiconducting polymers.  相似文献   

16.
Noncovalent conformational locks are broadly employed to construct highly planar π‐conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen‐based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene‐based building block, 1,2‐diethoxy‐1,2‐bisselenylvinylene ( DESVS ), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution‐processable conjugated polymers are synthesized and implemented in organic thin‐film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS ‐based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V?1 s?1 (p‐type) and 0.65 cm2 V?1 s?1 (n‐type) in TFTs, and power conversion efficiency >5% in OPV cells.  相似文献   

17.
The exploration of novel molecular architectures is crucial for the design of high‐performance ambipolar polymer semiconductors. Here, a “triple‐acceptors architecture” strategy to design the ambipolar polymer DPP‐2T‐DPP‐TBT is introduced. The utilization of this architecture enables DPP‐2T‐DPP‐TBT to achieve deep‐lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of ?5.38/?4.19 eV, and strong intermolecular interactions, which are favorable for hole/electron injection and intermolecular hopping through π‐stacking. All these factors result in excellent ambipolar transport characteristics and promising applications in complementary‐like circuits for DPP‐2T‐DPP‐TBT under ambient conditions with high hole/electron mobilities and a gain value of up to 3.01/3.84 cm2 V?1 s?1 and 171, respectively, which are among the best performances in ambipolar polymer organic thin‐film transistors and associated complementary‐like circuits, especially in top‐gate device configuration with low‐cost glass as substrates. These results demonstrate that the “triple‐acceptors architecture” strategy is an effective way for designing high‐performance ambipolar polymer semiconductors.  相似文献   

18.
As a rising star in the family of graphene analogues, germanene shows great potential for electronic and optical device applications due to its unique structure and electronic properties. It is revealed that the hydrogen terminated germanene not only maintains a high carrier mobility similar to that of germanene, but also exhibits strong light–matter interaction with a direct band gap, exhibiting great potential for photoelectronics. In this work, few‐layer germanane (GeH) nanosheets with controllable thickness are successfully synthesized by a solution‐based exfoliation–centrifugation route. Instead of complicated microfabrication techniques, a robust photoelectrochemical (PEC)‐type photodetector, which can be extended to flexible device, is developed by simply using the GeH nanosheet film as an active electrode. The device exhibits an outstanding photocurrent density of 2.9 µA cm?2 with zero bias potential, excellent responsivity at around 22 µA W?1 under illumination with intensity ranging from 60 to 140 mW cm?2, as well as short response time (with rise and decay times, tr = 0.24 s and td = 0.74 s). This efficient strategy for a constructing GeH‐based PEC‐type photodetector suggests a path to promising high‐performance, self‐powered, flexible photodetectors, and it also paves the way to a practical application of germanene.  相似文献   

19.
To realize basic electronic units such as complementary metal‐oxide‐semiconductor (CMOS) inverters and other logic circuits, the selective and controllable fabrication of p‐ and n‐type transistors with a low Schottky barrier height is highly desirable. Herein, an efficient and nondestructive technique of electron‐charge transfer doping by depositing a thin Al2O3 layer on chemical vapor deposition (CVD)‐grown 2H‐MoTe2 is utilized to tune the doping from p‐ to n‐type. Moreover, a type‐controllable MoTe2 transistor with a low Schottky barrier height is prepared. The selectively converted n‐type MoTe2 transistor from the p‐channel exhibits a maximum on‐state current of 10 µA, with a higher electron mobility of 8.9 cm2 V?1 s?1 at a drain voltage (Vds) of 1 V with a low Schottky barrier height of 28.4 meV. To validate the aforementioned approach, a prototype homogeneous CMOS inverter is fabricated on a CVD‐grown 2H‐MoTe2 single crystal. The proposed inverter exhibits a high DC voltage gain of 9.2 with good dynamic behavior up to a modulation frequency of 1 kHz. The proposed approach may have potential for realizing future 2D transition metal dichalcogenide‐based efficient and ultrafast electronic units with high‐density circuit components under a low‐dimensional regime.  相似文献   

20.
Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V?1 s?1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V?1 s?1), amorphous silicon (≈1 cm2 V?1 s?1), and nanocrystalline silicon (≈50 cm2 V?1 s?1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号