首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophobic, self‐doped conjugated polyelectrolytes (CPEs) are introduced as highly stable active materials for organic electrochemical transistors (OECTs). The hydrophobicity of CPEs renders films very stable in aqueous solutions. The devices operate at gate voltages around zero and show no signs of degradation when operated for 104 cycles under ambient conditions. These properties make the produced OECTs ideal devices for applications in bioelectronics.  相似文献   

2.
3.
4.
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP‐only electrodes are showing improvements in signal performance and tissue interfaces. CP‐based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real‐world applications are highlighted.  相似文献   

5.
6.
A luminescent conjugated macrocycle polymer (CMP) with strong two‐photon fluorescence property, namely, P[5]‐TPE‐CMP, is constructed from ditriflate‐functionalized pillar[5]arene and a 1,1,2,2‐tetrakis(4‐ethynylphenyl)ethylene (TPE) linker through a Sonogashira–Hagihara cross‐coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]‐TPE‐CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe3+ at different excitation wavelengths (both UV and red–near‐infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4‐amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes.  相似文献   

7.
8.
Air‐stable and soluble tetrabutylammonium fluoride (TBAF) is demonstrated as an efficient n‐type dopant for the conjugated polymer ClBDPPV. Electron transfer from F? anions to the π‐electron‐deficient ClBDPPV through anion–π electronic interactions is strongly corroborated by the combined results of electron spin resonance, UV–vis–NIR, and ultraviolet photoelectron spectroscopy. Doping of ClBDPPV with 25 mol% TBAF boosts electrical conductivity to up to 0.62 S cm?1, among the highest conductivities that have been reported for solution‐processed n‐type conjugated polymers, with a thermoelectric power factor of 0.63 µW m?1 K?2 in air. Importantly, the Seebeck coefficient agrees with recently published correlations to conductivity. Moreover, the F?‐doped ClBDPPV shows significant air stability, maintaining the conductivity of over 0.1 S cm?1 in a thick film after exposure to air for one week, to the best of our knowledge the first report of an air‐stable solution‐processable n‐doped conductive polymer with this level of conductivity. The result shows that using solution‐processable small‐anion salts such as TBAF as an n‐dopant of organic conjugated polymers possessing lower LUMO (lowest unoccupied molecular orbital), less than ?4.2 eV) can open new opportunities toward high‐performance air‐stable solution‐processable n‐type thermoelectric (TE) conjugated polymers.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
A multifunctional theranostic platform based on conjugated polymer nanoparticles (CPNs) with tumor targeting, fluorescence detection, photodynamic therapy (PDT), and photothermal therapy (PTT) is developed for effective cancer imaging and therapy. Two conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)‐ethyl)fluorenyldivinylene]‐alt‐4,7‐(2,1,3‐benzothiadiazole) with bright red emission and photosensitizing ability and poly[(4,4,9,9‐tetrakis(4‐(octyloxy)phenyl)‐4,9‐dihydro‐s‐indacenol‐dithiophene‐2,7‐diyl)‐alt‐co‐4,9‐bis(thiophen‐2‐yl)‐6,7‐bis(4‐(hexyloxy)phenyl)‐thiadiazolo‐quinoxaline] with strong near‐infrared absorption and excellent photothermal conversion ability are co‐loaded into one single CPN via encapsulation approach using lipid‐polyethylene glycol as the matrix. The obtained co‐loaded CPNs show sizes of around 30 nm with a high singlet oxygen quantum yield of 60.4% and an effective photothermal conversion efficiency of 47.6%. The CPN surface is further decorated with anti‐HER2 affibody, which bestows the resultant anti‐HER2‐CPNs superior selectivity toward tumor cells with HER2 overexpression both in vitro and in vivo. Under light irradiation, the PDT and PTT show synergistic therapeutic efficacy, which provides new opportunities for the development of multifunctional biocompatible organic materials in cancer therapy.  相似文献   

17.
Organic diodes manufactured on a plastic substrate capable of rectifying a high‐frequency radio‐frequency identification signal (13.56 MHz), with sufficient power to operate an interactive smart tag, are reported. A high‐performance conjugated semiconductor (an indacenodithiophene‐benzothiadiazole copolymer) is combined with a carefully optimized architecture to satisfy the electrical requirements for an organic‐semiconductor‐based logic chip.  相似文献   

18.
Two conjugated polymers (CPs) with various compositions of phenylene and benzoselenadiazoben (BSD) are synthesized to have a special emitting property; different fluorescence colors in solution and in the solid states, allowing the resulting conjugated polymer dots (Pdots) to emit different fluorescence colors upon their size variation. The photophysical property of such different‐sized Pdots is investigated using fluorescence spectra and fluorescence lifetimes. A decrease in the fluorescence lifetime of Pdots is observed with an increase in the size of Pdots, caused by quantitative change in energy transfer from phenylene (energy donor) to the BSD unit (energy acceptor). The results provide that any CP can be used for the fabrication of Pdots with size‐tunable emission, as long as the CP shows different emissions according to its phases. Such emission of Pdots can even be observed when in the solid solution in polymer matrix, which emits different fluorescence colors depending on the size of embedded Pdots in the polymer matrix.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号