首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspired by the remarkable promotion of power conversion efficiency (PCE), commercial applications of organic photovoltaics (OPVs) can be foreseen in near future. One of the most promising applications is semitransparent (ST) solar cells that can be utilized in value‐added applications such as energy‐harvesting windows. However, the single‐junction STOPVs utilizing fullerene acceptors show relatively low PCEs of 4%–6% due to the limited sunlight absorption because it is a dilemma that more photons need to be harvested in UV–vis–near‐infrared (NIR) region to generate high photocurrent, which leads to the significant reduction of device transparency. This study describes the development of a new small‐bandgap electron‐acceptor material ATT‐2, which shows a strong NIR absorption between 600 and 940 nm with an E gopt of 1.32 eV. By combining with PTB7‐Th, the as‐cast OPVs yield PCEs of up to 9.58% with a fill factor of 0.63, an open‐circuit voltage of 0.73 V, and a very high short‐circuit current of 20.75 mA cm?2. Owing to the favorable complementary absorption of low‐bangap PTB7‐Th and small‐bandgap ATT‐2 in NIR region, the proof‐of‐concept STOPVs show the highest PCE of 7.7% so far reported for single‐junction STOPVs with a high transparency of 37%.  相似文献   

2.
3.
A fused hexacyclic electron acceptor, IHIC, based on strong electron‐donating group dithienocyclopentathieno[3,2‐b ]thiophene flanked by strong electron‐withdrawing group 1,1‐dicyanomethylene‐3‐indanone, is designed, synthesized, and applied in semitransparent organic solar cells (ST‐OSCs). IHIC exhibits strong near‐infrared absorption with extinction coefficients of up to 1.6 × 105m ?1 cm?1, a narrow optical bandgap of 1.38 eV, and a high electron mobility of 2.4 × 10?3 cm2 V?1 s?1. The ST‐OSCs based on blends of a narrow‐bandgap polymer donor PTB7‐Th and narrow‐bandgap IHIC acceptor exhibit a champion power conversion efficiency of 9.77% with an average visible transmittance of 36% and excellent device stability; this efficiency is much higher than any single‐junction and tandem ST‐OSCs reported in the literature.  相似文献   

4.
Neutral‐colored semitransparent organic solar cells (ST‐OSCs) have attracted considerable attention owing to their unique application in no‐visual‐obstacle building‐integrated photovoltaics. Toward this promising potential application, a synergistic effect is first proposed by employing a dielectric mirror and ternary photoactive layer with near‐infrared absorption to tune the color perception as well as ST‐OSC performance precisely. As a result, a neutral‐color ST‐OSC with high average transmittance of over 21% is successfully constructed, and a remarkable color‐rendering index approaching 100 and high power conversion efficiency (PCE) of 9.37% are simultaneously achieved. To the best of our knowledge, this is the highest PCE reported for neutral‐color ST‐OSCs to date. Importantly, this synergistic effect is demonstrated to be a universal strategy that is not only suitable for various photoactive layer systems, but can also be implanted in flexible substrate. The resulting neutral‐color flexible ST‐OSCs also show a promising PCE of 8.76%.  相似文献   

5.
A wide bandgap small molecular acceptor, SFBRCN, containing a 3D spirobifluorene core flaked with a 2,1,3‐benzothiadiazole (BT) and end‐capped with highly electron‐deficient (3‐ethylhexyl‐4‐oxothiazolidine‐2‐yl)dimalononitrile (RCN) units, has been successfully synthesized as a small molecular acceptor (SMA) for nonfullerene polymer solar cells (PSCs). This SMA exhibits a relatively wide optical bandgap of 2.03 eV, which provides a complementary absorption to commonly used low bandgap donor polymers, such as PTB7‐Th. The strong electron‐deficient BT and RCN units afford SFBRCN with a low‐lying LUMO (lowest unoccupied molecular orbital) level, while the 3D structured spirobifluorene core can effectively suppress the self‐aggregation tendency of the SMA, thus yielding a polymer:SMA blend with reasonably small domain size. As the results of such molecular design, SFBRCN enables nonfullerene PSCs with a high efficiency of 10.26%, which is the highest performance reported to date for a large bandgap nonfullerene SMA.  相似文献   

6.
Relative to electron donors for bulk heterojunction organic solar cells (OSCs), electron acceptors that absorb strongly in the visible and even near‐infrared region are less well developed, which hinders the further development of OSCs. Fullerenes as traditional electron acceptors have relatively weak visible absorption and limited electronic tunability, which constrains the optical and electronic properties required of the donor. Here, high‐performance fullerene‐free OSCs based on a combination of a medium‐bandgap polymer donor (FTAZ) and a narrow‐bandgap nonfullerene acceptor (IDIC), which exhibit complementary absorption, matched energy levels, and blend with pure phases on the exciton diffusion length scale, are reported. The single‐junction OSCs based on the FTAZ:IDIC blend exhibit power conversion efficiencies up to 12.5% with a certified value of 12.14%. Transient absorption spectroscopy reveals that exciting either the donor or the acceptor component efficiently generates mobile charges, which do not suffer from recombination to triplet states. Balancing photocurrent generation between the donor and nonfullerene acceptor removes undesirable constraints on the donor imposed by fullerene derivatives, opening a new avenue toward even higher efficiency for OSCs.  相似文献   

7.
A ternary structure has been demonstrated as being an effective strategy to realize high power conversion efficiency (PCE) in organic solar cells (OSCs); however, general materials selection rules still remain incompletely understood. In this work, two nonfullerene small‐molecule acceptors 3TP3T‐4F and 3TP3T‐IC are synthesized and incorporated as a third component in PM6:Y6 binary blends. The photovoltaic behaviors in the resultant ternary OSCs differ significantly, despite the comparable energy levels. It is found that incorporation of 15% 3TP3T‐4F into the PM6:Y6 blend results in facilitating exciton dissociation, increasing charge transport, and reducing trap‐assisted recombination. All these features are responsible for the enlarged PCE of 16.7% (certified as 16.2%) in the PM6:Y6:3TP3T‐4F ternary OSCs, higher than that (15.6%) in the 3TP3T‐IC containing ternary devices. The performance differences are mainly ascribed to the compatibility between the third component and the host materials. The 3TP3T‐4F guest acceptor exhibits an excellent compatibility with Y6, tending to form well‐mixed phases in the ternary blend without disrupting the favored bicontinuous transport networks, whereas 3TP3T‐IC displays a morphological incompatibility with Y6. This work highlights the importance of considering the compatibility for materials selection toward high‐efficiency ternary organic OSCs.  相似文献   

8.
Most nonfullerene acceptors developed so far for high‐performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused‐ring core. In this work, a new nonfullerene acceptor of DF‐PCIC is synthesized with an unfused‐ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5‐difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF‐PCIC. After proper optimizations, the OSCs with DF‐PCIC as the acceptor and the polymer PBDB‐T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused‐ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB‐T:DF‐PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene‐free OSCs, which might be due to the unique unfused‐ring core of DF‐PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future.  相似文献   

9.
Fabricating solar cells with tandem structure is an efficient way to broaden the photon response range without further increasing the thermalization loss in the system. In this work, a tandem organic solar cell (TOSC) based on highly efficient nonfullerene acceptors (NFAs) with series connection type is demonstrated. To meet the different demands of front and rear sub‐cells, two NFAs named F‐M and NOBDT with a whole absorption range from 300 to 900 nm are designed, when blended with wide bandgap polymer poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and narrow bandgap polymer PTB7‐Th, respectively, the PBDB‐T: F‐M system exhibits a high Voc of 0.98 V and the PTB7‐Th: NOBDT system shows a remarkable Jsc of 19.16 mA cm?2, which demonstrate their potential in the TOSCs. With the guidance of optical simulation, by systematically optimizing the thickness of each layer in the TOSC, an outstanding power conversion efficiency of 14.11%, with a Voc of 1.71 V, a Jsc of 11.72 mA cm?2, and a satisfactory fill factor of 0.70 is achieved; this result is one of the top efficiencies reported to date in the field of organic solar cells.  相似文献   

10.
11.
To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small‐molecule acceptors, IT‐2Cl and IT‐4Cl, is designed and synthesized by introducing easy‐synthesis chlorine substituents onto the indacenodithieno[3,2‐b]thiophene units. The unique feature of the large dipole moment of the C? Cl bond enhances the intermolecular charge‐transfer effect between the donor–acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C? Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low‐lying highest occupied molecular orbital level. In addition, since IT‐2Cl and IT‐4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.  相似文献   

12.
13.
A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD) as a donor polymer blended with either the nonfullerene acceptor EH‐IDTBR or the fullerene derivative, [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T‐2OD:EH‐IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH‐IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T‐2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T‐2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap‐assisted recombination through increased photoinduced trap states, PffBT4T‐2OD:EH‐IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T‐2OD:EH‐IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T‐2OD:PC71BM devices.  相似文献   

14.
High‐performance ternary organic solar cells are fabricated by using a wide‐bandgap polymer donor (bithienyl‐benzodithiophene‐alt‐fluorobenzotriazole copolymer, J52) and two well‐miscible nonfullerene acceptors, methyl‐modified nonfullerene acceptor (IT‐M) and 2,2′‐((2Z ,2′Z )‐((5,5′‐(4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydros‐indaceno[1,2‐b :5,6‐b ′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H ‐indene‐2,1‐diylidene))dimalononitrile (IEICO). The two acceptors with complementary absorption spectra and similar lowest unoccupied molecular orbital levels show excellent compatibility in the blend due to their very similar chemical structures. Consequently, the obtained ternary organic solar cells (OSC) exhibits a high efficiency of 11.1%, with an enhanced short‐circuit current density of 19.7 mA cm?2 and a fill factor of 0.668. In this ternary system, broadened absorption, similar output voltages, and compatible morphology are achieved simultaneously, demonstrating a promising strategy to further improve the performance of ternary OSCs.  相似文献   

15.
Naphtho[1,2‐b:5,6‐b′]dithiophene is extended to a fused octacyclic building block, which is end capped by strong electron‐withdrawing 2‐(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile to yield a fused‐ring electron acceptor (IOIC2) for organic solar cells (OSCs). Relative to naphthalene‐based IHIC2, naphthodithiophene‐based IOIC2 with a larger π‐conjugation and a stronger electron‐donating core shows a higher lowest unoccupied molecular orbital energy level (IOIC2: ?3.78 eV vs IHIC2: ?3.86 eV), broader absorption with a smaller optical bandgap (IOIC2: 1.55 eV vs IHIC2: 1.66 eV), and a higher electron mobility (IOIC2: 1.0 × 10?3 cm2 V?1 s?1 vs IHIC2: 5.0 × 10?4 cm2 V?1 s?1). Thus, IOIC2‐based OSCs show higher values in open‐circuit voltage, short‐circuit current density, fill factor, and thereby much higher power conversion efficiency (PCE) values than those of the IHIC2‐based counterpart. In particular, as‐cast OSCs based on FTAZ: IOIC2 yield PCEs of up to 11.2%, higher than that of the control devices based on FTAZ: IHIC2 (7.45%). Furthermore, by using 0.2% 1,8‐diiodooctane as the processing additive, a PCE of 12.3% is achieved from the FTAZ:IOIC2 ‐ based devices, higher than that of the FTAZ:IHIC2 ‐ based devices (7.31%). These results indicate that incorporating extended conjugation into the electron‐donating fused‐ring units in nonfullerene acceptors is a promising strategy for designing high‐performance electron acceptors.  相似文献   

16.
17.
18.
19.
20.
In this work, highly efficient ternary‐blend organic solar cells (TB‐OSCs) are reported based on a low‐bandgap copolymer of PTB7‐Th, a medium‐bandgap copolymer of PBDB‐T, and a wide‐bandgap small molecule of SFBRCN. The ternary‐blend layer exhibits a good complementary absorption in the range of 300–800 nm, in which PTB7‐Th and PBDB‐T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB‐T to PTB7‐Th, and from SFBRCN to the above two polymer donors. The hole‐back transfer from PTB7‐Th to PBDB‐T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB‐T:PTB7‐Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open‐circuit voltage (V oc) of 0.93 V, a short‐circuit current density (J sc) of 17.86 mA cm?2, and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB‐OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号