首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic linkers, have attracted significant research interest in recent years. Compared with conventional porous materials, MOFs exhibit a variety of advantages, including a large surface area, a tunable pore size and shape, an adjustable composition and structure, biodegradability, and versatile functionalities, which enable MOFs to perform as promising platforms for drug delivery, molecular imaging, and theranostic applications. In this article, the recent research progress related to nanoscale metal–organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications. The future challenges and opportunities of NMOFs are also discussed in the context of translational medical research. More effort is warranted to develop clinically translatable NMOFs for various applications in nanomedicine.  相似文献   

2.
Metal‐organic frameworks (MOFs) represent a new class of hybrid organic‐inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

3.
Metal-organic frameworks (MOFs) represent a new class of hybrid organic-inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

4.
Metal–organic frameworks (MOFs) have attracted much attention over the past two decades due to their highly promising applications not only in the fields of gas storage, separation, catalysis, drug delivery, and sensors, but also in relatively new fields such as electric, magnetic, and optical materials resulting from their extremely high surface areas, open channels and large pore cavities compared with traditional porous materials like carbon and inorganic zeolites. Particularly, MOFs involving pores within the mesoscopic scale possess unique textural properties, leading to a series of research in the design and applications of mesoporous MOFs. Unlike previous Reviews, apart from focusing on recent advances in the synthetic routes, unique characteristics and applications of mesoporous MOFs, this Review also mentions the derivatives, composites, and hierarchical MOF‐based systems that contain mesoporosity, and technical boundaries and challenges brought by the drawbacks of mesoporosity. Moreover, this Review subsequently reveals promising perspectives of how recently discovered approaches to different morphologies of MOFs (not necessarily entirely mesoporous) and their corresponding performances can be extended to minimize the shortcomings of mesoporosity, thus providing a wider and brighter scope of future research into mesoporous MOFs, but not just limited to the finite progress in the target substances alone.  相似文献   

5.
Metal–organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF‐based nanocomposites with advanced bio‐related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF‐based biomedical materials are also discussed.  相似文献   

6.
The design and development of multifunctional nano-drug delivery systems (NDDSs) is a solution that is expected to solve some intractable problems in traditional cancer treatment. In particular, metal-organic frameworks (MOFs) are novel hybrid porous nanomaterials which are constructed by the coordination of metal cations or clusters and organic bridging ligands. Benefiting from their intrinsic superior properties, MOFs have captivated intensive attentions in drug release and cancer theranostic. Based on what has been achieved about MOF-based DDSs in recent years, this review introduces different stimuli-responsive mechanisms of them and their applications in cancer diagnosis and treatment systematically. Moreover, the existing challenges and future opportunities in this field are summarized. By realizing industrial production and paying attention to biosafety, their clinical applications will be enriched.  相似文献   

7.
Synthetic nano/micro/millimeter‐sized machines that harvest energy from the surrounding environment and then convert it to motion have had a significant impact on many research areas such as biology (sensing, imaging, and therapy) and environmental applications. Autonomous motion is a key element of these devices. A high surface area is preferable as it leads to increased propellant or cargo‐loading capability. Integrating highly ordered and porous metal–organic frameworks (MOFs) with self‐propelled machines is demonstrated to have a significant impact on the field of nano/micro/millimeter‐sized devices for a wide range of applications. MOFs have shown great potential in many research fields due to their tailorable pore size. These fields include energy storage and conversion; catalysis, biomedical application (e.g., drug delivery, imaging, and cancer therapy), and environmental remediation. The marriage of motors and MOFs may provide opportunities for many new applications for synthetic nano/micro/millimeter‐sized machines. Herein, MOF‐based micro‐ and nanomachines are reviewed with a focus on the specific properties of MOFs.  相似文献   

8.
Metal organic frameworks (MOFs), as an original kind of organic–inorganic porous material, are constructed with metal centers and organic linkers via a coordination complexation reaction. Among uncountable MOF materials, iron‐containing metal organic frameworks (Fe‐MOFs) have excellent potential in practical applications owing to their many fascinating properties, such as diverse structure types, low toxicity, preferable stability, and tailored functionality. Here, recent research progresses of Fe‐MOFs in attractive features, synthesis, and multifunctional applications are described. Fe‐MOFs with porosity and tailored functionality are discussed according to the design of building blocks. Four types of synthetic methods including solvothermal, hydrothermal, microwave, and dry gel conversion synthesis are illustrated. Finally, the applications of Fe‐MOFs in Li‐ion batteries, sensors, gas storage, separation in gas and liquid phases, and catalysis are elucidated, focusing on the mechanism. The aim is to provide prospects for extending Fe‐MOFs in more practical applications.  相似文献   

9.
Metal–organic frameworks (MOFs) have diverse potential applications in catalysis, gas storage, separation, and drug delivery because of their nanoscale periodicity, permanent porosity, channel functionalization, and structural diversity. Despite these promising properties, the inherent structural features of even some of the best‐performing MOFs make them moisture‐sensitive and unstable in aqueous media, limiting their practical usefulness. This problem could be overcome by developing stable hydrophobic MOFs whose chemical composition is tuned to ensure that their metal–ligand bonds persist even in the presence of moisture and water. However, the design and fabrication of such hydrophobic MOFs pose a significant challenge. Reported syntheses of hydrophobic MOFs are critically summarized, highlighting issues relating to their design, characterization, and practical use. First, wetting of hydrophobic materials is introduced and the four main strategies for synthesizing hydrophobic MOFs are discussed. Afterward, critical challenges in quantifying the wettability of these hydrophobic porous surfaces and solutions to these challenges are discussed. Finally, the reported uses of hydrophobic MOFs in practical applications such as hydrocarbon storage/separation and their use in separating oil spills from water are summarized. Finally, the state of the art is summarized and promising future developments of hydrophobic MOFs are highlighted.  相似文献   

10.
Owing to the potential applications in technological areas such as gas storage, catalysis, separation, sensing and nonlinear optics, tremendous efforts have been devoted to the development of porous metal‐organic frameworks (MOFs) over the past ten years. Homochiral porous MOFs are particularly attractive candidates as heterogeneous asymmetric catalysts and enantioselective adsorbents and separators for production of optically active organic compounds due to the lack of homochiral inorganic porous materials such as zeolites. In this review, we summarize the recent research progress in homochiral MOF materials, including their synthetic strategy, distinctive structural features and latest advances in asymmetric heterogeneous catalysis and enantioselective separation.  相似文献   

11.
Metal–organic frameworks (MOFs) are highly attractive materials because of their ultra‐high surface areas, simple preparation approaches, designable structures, and potential applications. In the past several years, MOFs have attracted worldwide attention in the area of hydrogen energy, particularly for hydrogen storage. In this review, the recent progress of hydrogen storage in MOFs is presented. The relationships between hydrogen capacities and structures of MOFs are evaluated, with emphasis on the roles of surface area and pore size. The interaction mechanism between H2 and MOFs is discussed. The challenges to obtain a high hydrogen capacity at ambient temperature are explored.  相似文献   

12.
Owing to the progressive development of metal–organic‐frameworks (MOFs) synthetic processes and considerable potential applications in last decade, integrating biomolecules into MOFs has recently gain considerable attention. Biomolecules, including lipids, oligopeptides, nucleic acids, and proteins have been readily incorporated into MOF systems via versatile formulation methods. The formed biomolecule‐MOF hybrid structures have shown promising prospects in various fields, such as antitumor treatment, gene delivery, biomolecular sensing, and nanomotor device. By optimizing biomolecule integration methods while overcoming existing challenges, biomolecule‐integrated MOF platforms are very promising to generate more practical applications.  相似文献   

13.
Motile metal?organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.  相似文献   

14.
Metal–organic frameworks (MOFs) have attracted a special attention due to outstanding porosity, adjustable pore sizes, and huge opportunities in varying organic–inorganic compositions. Enormous studies conducted so far on MOFs indicate their high potential in catalysis, gas adsorption, drug delivery, water treatment, energy storage, among others. However, mass production of MOFs is still limited mainly due to the non-economic, non-green and complex synthesis methods. Mechanochemistry is an alternative solution for efficient and environmentally friendly syntheses of various MOFs. Fast and solvent-free or solvent-less mechanosynthesis seems to be a very powerful versatile method for obtaining these advanced porous materials. The mechanochemical concept was used for the preparation of various MOFs including the most popular structures: MOF-5, ZIF-8, HKUST-1, MIL-101, UiO-66. These MOFs feature high specific surface areas, comparable to those prepared by conventional solvent-based methods. Furthermore, mechanochemistry was successfully used for the synthesis of non-conventional multimetallic MOFs and previously unreported solid phases. This review shows the recent developments, challenges and perspectives of green synthesis of diverse MOF structures using mechanochemistry. Besides describing the mechanochemical synthesis of MOFs, some achievements in green applications are also summarized. Importantly, current trends in research suggests for further development of these fields i.e., harmful gas adsorption, water treatment, and energy storage.  相似文献   

15.
王涛  徐丹 《包装工程》2023,44(15):86-93
目的 综述金属有机框架材料(Metal-organic frameworks,MOFs)作为载体系统在食品抗菌包装领域的研究现状和应用进展,以期为MOFs类抗菌包装材料的研发和应用提供参考。方法 介绍MOFs的基本概念及分类,概述MOFs的制备方法(加热法、机械法和电化学法等),总结归纳近年来MOFs作为载体系统在无机抗菌剂、有机抗菌剂和天然抗菌剂领域的应用,并讨论MOFs作为载体系统的机遇和挑战。结论 MOFs作为一种有机与无机相结合的多孔性复合材料,不仅可有效封装抗菌剂,实现缓释和控释,且将MOFs复合材料作为高分子填料可提高其抗菌性能、力学性能和抗紫外线性能等,因此在制备高效、安全的食品抗菌包装方面具有巨大潜力。  相似文献   

16.
金属有机骨架材料(MOFs)由于其结构多样性、骨架的可修饰性、超高比表面积和孔隙等特点,在质子传导、气体分离和吸附、催化、化学传感和生物医药领域有着独特的优势和广泛的应用。本文综述了近年来金属有机骨架材料在质子传导方面的研究进展,系统地阐述了质子传导的Grotthuss机理和Vehicel机理,并针对两种不同的机理分别总结了提高MOFs质子传导率的方法,对质子传导MOFs的设计具有显著的指导意义。此外,还介绍了质子传导MOFs最重要的应用之一——质子交换膜。质子交换膜由于其高电导率、易成膜以及优良的选择性透过等特点在燃料电池上有巨大的应用潜力。质子交换膜燃料电池的快速发展,可改善对化石燃料高度依赖的能源结构和日益恶化的环境问题。  相似文献   

17.
Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to be powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this review, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.  相似文献   

18.
Abstract

Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to be powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this review, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.  相似文献   

19.
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.  相似文献   

20.
Hollow metal–organic framework (MOF) micro/nanostructures and their derivatives are attracting a great amount of research interest in recent years because their hierarchical porous structures not only provide abundant, easily accessed metal sites but also endow 3D channels for rapid mass transport. As a result, they demonstrate significant advantages in many applications including catalysis, gas sensors, batteries, supercapacitors, and so on. Nevertheless, studies on hollow MOFs and their derivatives are still at the beginning of this field, and the relationship between their structures and application performances is not yet reviewed comprehensively. Herein, the synthetic strategies and practical applications of hollow micro/nanostructured MOFs and their derivatives are summarized, and their corresponding prospects are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号